Pointwise Convergence of Lagrange Interpolation Based at the Zeros of Orthonormal Polynomials with Respect to Weights on the Whole Real Line*

Arnold Knopfmacher
Mathematics Depariment. University of the Witwatersrand, Johanneshurg 2001, South Africa
Communicated bv V. Totik
Received July 1, 1985

Abstract

Under various assumptions on a weight W^{2}, with support \mathbb{P}, we obtain rates for the pointwise convergence of Lagrange interpolation based at the zeros of the orthonormal polynomials with respect to W^{2}, in the case of a uniformly continuous function $f(x)$. The weights considered include $W_{m}(x)=\operatorname{cxp}\left(-\frac{1}{2}|x|^{\prime \prime \prime}\right), m$ an even positive integer. The technique used generalizes that of Freud, who considered pointwise convergence of Lagrange interpolation in the case of the Hermite weight. However, even for the Hermite weight, our results refine and extend the upper and lower bounds of Freud. We establish as well, as preliminary results, upper and lower bounds for generalized Lebesgue functions and for absolute values of the orthogonal polynomials associated with $W_{m}^{2}(x)$. , 1987 Academic Press. Inic

1. Introduction

Convergence of Lagrange interpolation based at the zeros of orthogonal polynomials is a subject which has been widely investigated in the case of weights on a finite interval. For a comprehensive survey of what has been achieved, see Nevai [25,21]. However, owing to the present dearth of results on orthonormal polynomials on the whole real line, Lagrange interpolation for weights with unbounded support has been investigated primarily in the case of the Hermite weight.

Pointwise convergence of Lagrange interpolation for the Hermite weight was proved first by Freud [6], while Nevai [23] proved results on mean convergence of Lagrange interpolation. Bonan [2] obtained necessary and sufficient conditions for the mean convergence of Lagrange interpolation for the weights $|x|^{\alpha} \exp \left(-x^{2}\right), \alpha>-1$, in $L_{p}, 0<p \leqslant \infty$. Sharp results for the pointwise convergence of Lagrange interpolation for weights

[^0]$|x|^{x} \exp \left(-x^{2}\right), x>-1$, were established by Kis [9]. The case of the Laguerre weight has been investigated in detail by Nevai [18-20]. Recently Knopfmacher and Lubinsky [12] considered mean convergence of Lagrange interpolation for a general class of Freud weights.

In this paper we prove pointwise convergence of Lagrange interpolation for a subclass of the weights $W^{2}=\exp (-2 Q(x))$, introduced by Freud [8], and which include the weights $W_{m}(x)=\exp \left(-\frac{1}{2}|x|^{m}\right), m$ an even, positive integer. The technique used, involves a generalization of the ideas of Freud [6]. In addition we make extensive use of properties of exponential weights proved by Freud [8] and bounds for orthonormal polynomials proved by Bonan [3] and Nevai [24].

However, even for the Hermite weight, our results extend those of Freud in one major aspect. The bounds Freud obtained in Satz 2 [6], take no account of the relative position of x and the zeros $x_{k n}$ of the orthonormal polynomial $p_{n}(x)$ associated with W^{2}. We show, as one might expect, that since the Lagrange interpolation polynomial interpolates to the function at the zeros $x_{k n}$. one can obtain enhanced rates of convergence for values of x suitably close to a zero $x_{k n}$. This is shown in Theorem 3.2, for all the weights considered.

Freud proved, in addition, that for a suitably defined function $f(x)$, his bounds were sharp, but only for certain discrete values of x, namely the zeros of $p_{n+1}(x)$. In Theorem 3.4 we show that our bounds are in general sharp for all values of x lying in an interval which can grow with n.

In Section 2, we introduce the notation that will be used throughout the paper. Furthermore, we state our main results in Section 3, and they are proved in Sections 4 and 5.

2. Notation

Let W denote an even, nonnegative function on \mathbb{R} with all moments

$$
\mu_{n}=\int^{\prime}, x^{\prime \prime} W^{2}(x) d x, \quad n=0,1,2, \ldots . \quad \text { finite. }
$$

Also let $\left\{p_{n}\left(W^{2}, x\right)\right\}=\left\{p_{n}(x)\right\}$ be the sequence of orthonormal polynomials with respect to W^{2}, that is,

$$
\int \quad p_{m}(x) p_{n}(x) W^{2}(x) d x= \begin{cases}0, & m \neq n \\ 1, & m=n\end{cases}
$$

Let $\ddot{i n}_{n}$ be the leading coefficient of $p_{n}, n=0,1,2, \ldots$ Let $a_{n}=\gamma_{n}, \gamma_{n}$, $n=1,2,3, \ldots$. We assume throughout that $W(x)=\exp (-Q(x))$, where $Q(x)$ is even positive and twice differentiable in $(0, \infty)$ and Q^{\prime} is positive
and nondecreasing in $(0, \infty)$. These weights were considered in some detail by Freud ($[7,8]$ and references therein). Let q_{n} denote the unique positive solution of the equation

$$
\begin{equation*}
q_{n} Q^{\prime}\left(q_{n}\right)=n \tag{2.1}
\end{equation*}
$$

Note that the sequence $\left\{q_{n}\right\}$ is increasing and as shown in [8, p. 22].

$$
1<q_{2 n} q_{n}<2
$$

In keeping with the notation of Freud and others, $K_{n}(x, y)$ denotes the nth kernel of the orthogonal expansion,

$$
\begin{align*}
K_{n}(x, y) & =\sum_{k=0}^{n} p_{k}(x) p_{k}(y) \\
& =\frac{\gamma_{n} 1}{\gamma_{n}} \frac{p_{n}(x) p_{n}(y)-p_{n}(y) p_{n}(x)}{x-y} \tag{2.2}
\end{align*}
$$

(the Christoffel-Darboux formula) and $i_{n}\left(W^{2}, x\right) \equiv i_{n}(x)$ denotes the Christoffel function

$$
i_{n}\left(W^{2}, x\right)=1 / K_{n}(x, x)
$$

Furthermore

$$
i_{k n}=i_{n \prime}\left(W^{2}, x_{k n}\right), \quad k=1,2 \ldots, n .
$$

We denote the zeros of $p_{n}(x)$ by

$$
x_{k n} \quad k=1,2, \ldots, n, \text { where } x_{n n}<x_{n}, n<\cdots<x_{1, n}
$$

Throughout given x, let $x_{j,}$ denote the closest zero of $p_{n}(x)$ to x. We define $x_{\text {in }}$ to be the closest zero of $p_{n}(x)$ on the left, in the event that x lies midway between two zeros.

The fundamental polynomials of Lagrange interpolation are

$$
\begin{equation*}
l_{k n}(x)=\lambda_{k n} \frac{\gamma_{n-1}}{\gamma_{n}} \frac{p_{n}(x) p_{n-1}\left(x_{k n}\right)}{x-x_{k n}}, \quad k=1,2, \ldots, n, \tag{2.3}
\end{equation*}
$$

and the Lagrange interpolation polynomial of degree at most $n-1$ is

$$
\begin{equation*}
L_{n}(f ; x)=\sum_{k=1}^{n} l_{k n}(x) f\left(x_{k n}\right) \tag{2.4}
\end{equation*}
$$

For convenience we define

$$
H_{n, p}(x)=\sum_{k-1}^{n} \dot{\lambda}_{k n}\left|K_{n}\left(x, x_{k n}\right)\right|^{p} \quad \text { for } p>0, n=1,2, \ldots
$$

Let $f(x)$ be a bounded measurable function on $(-\infty, \infty)$. We define the r th modulus of continuity of f by

$$
\omega_{r}(f ; \delta)=\sup _{\substack{|h| \leq \delta \\ j h<x<x}}\left|\sum_{v=0}^{r}\binom{r}{v}(-1)^{r} f(x+v h)\right|, \quad \delta>0
$$

We use the usual norm notation. For example,

$$
\|f\|_{x}=\sup _{x \in \mathbb{R}}|f(x)| .
$$

Throughout c, c_{1}, c_{2}, \ldots will denote positive constants independent of n and x. For notational convenience the constants will not be numbered except in a case where confusion may arise. Thus c does not necessarily denote the same constant from line to line.

By $f(x) \sim g(x)$ we denote the condition $c_{1} \leqslant f(x) / g(x) \leqslant c_{2}$ for all relevant x.

The usual o, O notation will be used.

3. Main Results

The class of weights considered is as follows:
Definition 3.1. $W^{2}=\exp (-2 Q)$ is a regular weight if it satisfies
(a) Explicit Assumptions. Q is an even, convex twice differentiable function in $(-x, x)$ with $Q(x)>0$ and $Q^{\prime}(x)>0$ for $x \in(0, \infty)$ and

$$
\begin{gather*}
x Q^{\prime \prime}(x) / Q^{\prime}(x) \leqslant c, \quad 0<x<x, \tag{3.1}\\
0 \leqslant Q^{\prime \prime}\left(x_{1}\right) \leqslant\left(1+c_{1}\right) Q^{\prime \prime}\left(x_{2}\right), \quad 0<x_{1}<x_{2}, \tag{3.2}\\
Q^{\prime}(2 x) / Q^{\prime}(x)>1+c, \quad x \text { large enough. } \tag{3.3}
\end{gather*}
$$

(b) Implicit Assumptions.

$$
\begin{equation*}
\left|p_{n}\left(W^{2}, x\right) W(x)\right| \leqslant c_{1} q_{n}^{-1 / 2}, \quad|x| \leqslant c_{2} q_{n}, \quad n \geqslant 1 . \tag{3.4}
\end{equation*}
$$

The explicit assumptions can be weakened substantially for the required properties of W^{2} to hold. In fact (3.3) is implied by the other conditions on Q. However, for ease of reference, we retain the restrictions in the above form.

The implicit assumption (3.4) is essential for our own proofs. We note in particular, that the weights

$$
\begin{equation*}
W_{m}(x)=\exp \left(-\frac{1}{2} x^{m}\right), \quad m=2,4,6, \ldots, \tag{3.5}
\end{equation*}
$$

satisfy (3.4) (Bonan [3], Nevai [24]). Of course for $W_{m}(x)$, we have by (2.1)

$$
\begin{equation*}
q_{n}=(2 n / m)^{1 / m} . \tag{3.6}
\end{equation*}
$$

In addition it has been proved [1, Theorem 3.5; 10, Chap. 2] that if W^{2} satisfies the explicit assumptions of Definition 3.1

$$
\begin{equation*}
a_{n}=\gamma_{n-1} / \gamma_{n} \sim q_{n} . \tag{3.7}
\end{equation*}
$$

We shall prove as a consequence of (3.1) to (3.4) that W^{2} satisfies

$$
\begin{equation*}
\left|p_{n, 1}\left(x_{k n}\right) W\left(x_{k n}\right)\right| \sim q_{n}^{1 / 2}, \quad\left|x_{k n}\right|<c q_{n} \tag{3.8}
\end{equation*}
$$

The results on Lagrange interpolation can now be stated.
Theorem 3.2. Let W^{2} be a regular weight. For all uniformly continuous functions $f(x)$ and all natural r, there exists c_{1} such that uniformly for $|x|<c_{1} q_{n}$.

$$
\begin{equation*}
\left|f(x)-L_{n}(f ; x)\right| \leqslant c_{r} \omega_{r}\left(f ; q_{n} / n\right)\left\{\left(n / q_{n}\right)\left|x-x_{j n}\right|\left[\log n+W^{1}(x)\right]+c\right\} . \tag{3.9}
\end{equation*}
$$

Theorem 3.3. Let $W(x)=W_{m}(x), m=2,4,6, \ldots$ Let $\varepsilon>0$. Let r be a positive integer. For all uniformly continuous functions $f(x)$ there exist \mathcal{c}_{2} and $c_{1}>1$ with the following properties:

$$
\left|f(x)-L_{n}(f ; x)\right| \leqslant\left\{\begin{array}{cl}
c_{r}[\log n+W & \prime(x)] \omega_{r}\left(f ; q_{n} / n\right), \quad|x| \leqslant c_{2} q_{n} \\
x \notin\left(2 a_{n}-\varepsilon n^{-1 / m},\right. & \left.2 a_{n}+\varepsilon n^{-1 / m}\right) \\
\|f\| W^{-1}(x) c_{1}^{-n}, & |x|>c_{2} q_{n} .
\end{array}\right.
$$

In the case of the Hermite weight we need not omit the interval ($2 a_{n}-\varepsilon n^{-1 / 2}, 2 a_{n}+\varepsilon n^{-1 / 2}$). For $m>2$, the results of Bonan and Clark [4] can be used to fill the gap.

The following result shows that we can define a function $f(x)$ for which the rates of convergence of Theorem 3.2 are substantially best possible for all $|x|<c q_{n}$.

Theorem 3.4. Let W^{2} be a regular weight. Then there exists c_{2} and functions f_{n} depending on n and $x, n=1,2, \ldots$, such that for $|x|<c_{1} q_{n}$,

$$
\begin{align*}
& \left.\mid f_{n}(x)-L_{n}(f ; x)\right\} \\
& \quad \geqslant c^{\prime}{ }^{\prime}\left(1_{r}\left(f_{n} ; q_{n} / n\right)\left\{\left(n / q_{n}\right)\left|x-x_{j n}\right|\left[\log n+(1+|x|)^{1} W^{\prime}(x)\right]-1\right\}\right. \tag{3.11}
\end{align*}
$$

In order to prove these results we need to obtain upper and lower bounds for the Lebesgue function

$$
\begin{equation*}
\sum_{k=1}^{n}\left|I_{k n}(x)\right| \tag{3.12}
\end{equation*}
$$

In fact we will obtain bounds for the generalized Lebesgue function

$$
\begin{equation*}
H_{n, p}(x) \equiv \sum_{k=1}^{n} \hat{\lambda}_{k n}\left|K_{n}\left(x, x_{k n}\right)\right|^{p}, \tag{3.13}
\end{equation*}
$$

for $0<p \leqslant 2 . H_{n .1}(x)$ is the Lebesgue function (3.12). For the Hermite weight, $|x|<\mathrm{c} n^{1 / 2}$, the upper bound (3.15) is better than that of [6, Satz 1] for $\left|x-x_{j n}\right|=o\left(q_{n} / n\right)$. Also, the lower bound of Freud [6, Satz 3] for $H_{n, 1}(\xi)$, holds only for ξ a zero of $p_{n+1}(x)$, for which $2 \leqslant|\xi| \leqslant c_{1} n^{1 / 2}$. In Theorem 3.6 we obtain a lower bound for $H_{n, p}(x), 0<p \leqslant 2$, which holds for all $|x|<c_{1} n^{1 / 2}$.

These results are stated as follows:
Theorem 3.5. Let $0<p \leqslant 2$. Let W^{2} be a regular weight. Then there exists c_{1} such that uniformly for $|x| \leqslant c_{1} q_{n}$,

$$
\text { (i) } \begin{align*}
H_{n, p}(x) \leqslant & c^{\{ }\left\{\left(n / q_{n}\right)^{p}{ }^{1} W^{2} 2^{p}(x)\right. \\
& \left.+\left[\left(n / q_{n}\right)\left|x-x_{j n}\right|\right]^{p} W^{\prime p}(x)\right\}, \quad p \neq 1 \tag{3.14}
\end{align*}
$$

(ii) $H_{n, 1}(x) \leqslant c\left(n / q_{n}\right) \mid x-x_{j n}\left\{\left\{\log n+W^{-1}(x)\right\}+c_{2}\right.$.

The following results show that the upper bounds in Theorem 3.5 are substantially best possible.

Theorem 3.6. Let $0<p \leqslant 2$. Let W^{2} be a regular weight. Then there exists c_{1} such that uniformly for $|x| \leqslant c_{1} q_{n}$,
(i) $H_{n, p}(x) \geqslant c\left\{n / q_{n}\right)^{p-1} W^{2 \cdot 2 p}(x)$

$$
\left.+\left[\left(n / q_{n}\right)\left|x-x_{j n}\right|\right]^{p}(1+|x|)^{n} W^{p}(x)\right\}, \quad p \neq 1
$$

(ii) $H_{n, 1}(x) \geqslant c\left(n / q_{n}\right) \mid x-x_{j n}\left\{\left\{\log n+(1+|x|)^{1} W^{-1}(x)\right\}+c_{2}\right.$.

Both of these theorems rely on the following \sim relationship for the orthonormal polynomial:

Thforfm 3.7. Let W^{2} be a regular weight. Then there exists c such that uniformly for $|x|<c q_{n}$,

$$
\begin{equation*}
\left|p_{n}(x) W(x)\right| \sim\left|x-x_{j n}\right|\left(n / q_{n}\right) q_{n}^{1 / 2} \tag{3.17}
\end{equation*}
$$

The proofs of Theorems 3.5, 3.6 and 3.7 appear in Section 4. Theorems 3.2, 3.3 and 3.4 on Lagrange interpolation are proved in Section 5.

4. Bounds for $H_{n, p}(x)$

We need a number of preliminary results.
Lemma 4.1. If $W^{2}(x)$ satisfies the explicit assumptions of Definition 3.1 then the following results hold:

$$
\begin{equation*}
\text { (a) } K_{n}(x, x) \leqslant c\left(n / q_{n}\right) W^{-2}(x), \quad x \in \mathbb{R} . \tag{4.1}
\end{equation*}
$$

(b) There exists c_{2} such that

$$
\begin{gather*}
K_{n}(x, x) \geqslant c\left(n / q_{n}\right) W^{2}(x), \quad|x| \leqslant c_{2} q_{n} \tag{4.2}\\
\text { (c) } x_{1 n} \leqslant c q_{n} \tag{4.3}
\end{gather*}
$$

(d) There exists c_{2} such that for $x_{k-1, n}, x_{k n} \in\left[-c_{2} q_{n}, c_{2} q_{n}\right]$,

$$
\begin{equation*}
c_{1} q_{n} / n<x_{k-1, n}-x_{k, n}<c_{3} q_{n} / n . \tag{4.4}
\end{equation*}
$$

Proof. (a) This is Lemma 2.5 in [8, p. 25].
(b) This is Lemma 4.2 in [8, p. 33].
(c) This follows from Theorem 1 in $[7$, p. 49].
(d) This follows from Theorem 5.1 in $[8, \mathrm{p} .36]$.

Lemma 4.2. Let W^{2} satisfy the explicit assumptions of Definition 3.1. Then there exists c such that for $x \in\left[-c q_{n}, c q_{n}\right]$,

$$
\begin{align*}
& \text { (a) } W\left(x_{j n}\right) \sim W(x) \sim W\left(x_{j+1, n}\right) . \tag{4.5}\\
& \text { (b) } \lambda_{j n} \sim \lambda_{n}(x) \sim \lambda_{j+1, n} \tag{4.6}
\end{align*}
$$

Proof. See Lemma 4.2 in Knopfmacher [11].

Lemma 4.3 (Properties of Freud weights).

$$
\begin{array}{ll}
\text { (i) } c_{1} x^{2} \leqslant Q(x) \leqslant c_{2} x^{i}, & x \geqslant c_{3} \\
\text { (ii) } c_{1} x^{1 /(1+c)} \leqslant q_{1} \leqslant c_{2} x^{1 / 2}, & x \geqslant c_{3} . \tag{4.8}
\end{array}
$$

(iii) If $u>1$ then uniformly for $1 \leqslant v<u$;

$$
\begin{array}{ll}
& Q^{\prime}(v x) \sim Q^{\prime}(x), \\
\text { (iv) } \quad Q(x) \sim x Q^{\prime}(x) \sim x^{2} Q^{\prime \prime}(x), & x \geqslant c_{3} \\
\text { (v) } \quad c_{1} x \leqslant Q^{\prime}(x) \leqslant c_{2} x^{\prime}, & x \geqslant c_{3} . \tag{4.11}
\end{array}
$$

Proof. (i) As $Q^{\prime \prime}$ is nondecreasing and positive, it is easily seen that $Q(x) \geqslant c_{1} x^{2}$ for large x. The upper bound follows from Lemma $7(v)$ in [15].
(ii) The upper bound is Lemma 4.2 g in [11]. For the lower bound see Lemma 7(viii) in [15].
(iii) This is Lemma 7(ix) in [15].
(iv) The first part of (4.10) is Lemma 7(vi) in [15]. It suffices to establish

$$
Q^{\prime}(x) \sim x Q^{\prime \prime}(x), \quad x \geqslant r_{3} .
$$

In view of (3.1), it suffices to shown

$$
Q^{\prime}(x) \leqslant c x Q^{\prime \prime}(x), \quad x \geqslant c_{3} .
$$

But for $x \geqslant 1$, by (3.2),

$$
\begin{aligned}
Q^{\prime}(x) & =Q^{\prime}(1)+\int_{1}^{x} Q^{\prime \prime}(u) d u \\
& \leqslant Q^{\prime}(1)+x Q^{\prime \prime}(x)\left(1+c_{1}\right)
\end{aligned}
$$

Since $\lim _{x \rightarrow x} Q^{\prime}(x)=\infty$, (by (4.7) and the first part of (4.10)) we obtain

$$
(1+c)^{\prime} \leqslant \liminf _{x \rightarrow x} x Q^{\prime \prime}(x) / Q^{\prime}(x) .
$$

Hence, this completes the proof of (4.10).
(v) This now follows from (4.7) and (4.10).

Lemma 4.4. (Local Markov-Bernstein inequality). Let W^{2} satisfy the
explicit assumptions in Definition 3.1. There exist c_{1}, c_{2} and c_{3} such that for $0<\delta \leqslant c_{1}$ and all polynomials P of degree at most n,

$$
\begin{equation*}
\left\|P^{\prime} W\right\|_{L_{x}\left(-\delta q_{n}, \delta q_{n}\right)} \leqslant c_{3}\left(n / q_{n}\right)\|P W\|_{L_{x}\left(-\delta c_{2} q_{n}, \delta c_{2} q_{n}\right)} . \tag{4.12}
\end{equation*}
$$

Proof. Let ξ_{n} denote the positive root of the equation

$$
\begin{equation*}
\xi_{n}^{2} \max \left\{\left|Q^{\prime \prime}(u)\right|: 1 \leqslant u \leqslant \xi_{n}\right\}=n, \tag{4.13}
\end{equation*}
$$

n large enough. It is shown in Lubinsky [17, Corollary 3.2], that for all polynomials P of degree at most n, and all $0<\delta<\varepsilon \leqslant 1$,

$$
\begin{equation*}
\left\|P^{\prime} W\right\|_{1-x\left(-\phi \xi_{n}, \delta \xi_{n}\right)} \leqslant c\left(n / \xi_{n}\right)\|P W\|_{\left.L_{\times 1}-\varepsilon \xi_{n}, \varepsilon \xi_{n}\right)} \tag{4.14}
\end{equation*}
$$

It is easy to see that (4.14) implies (4.12), provided we can show

$$
\begin{equation*}
\xi_{n} \sim q_{n}, \quad n \text { large enough. } \tag{4.15}
\end{equation*}
$$

Now by (3.2) and (4.13) above

$$
\begin{aligned}
q_{n} Q^{\prime}\left(q_{n}\right)=n & \leqslant \xi_{n}^{2} Q^{\prime \prime}\left(\xi_{n}\right)\left(1+c_{1}\right) \\
& \sim \xi_{n} Q^{\prime}\left(\xi_{n}\right)\left(1+c_{1}\right)
\end{aligned}
$$

by (4.10). Since Q^{\prime} is nondecreasing, we obtain for some $c>1$,

$$
q_{n} Q^{\prime}\left(q_{n}\right) \leqslant\left(c \xi_{n}\right) Q^{\prime}\left(c \xi_{n}\right)
$$

so that

$$
q_{n} \leqslant c \xi_{n}, \quad n \text { large enough. }
$$

Next, from (4.13), we see

$$
\begin{aligned}
q_{n} Q^{\prime}\left(q_{n}\right)=n & \geqslant \xi_{n}^{2} Q^{\prime \prime}\left(\xi_{n}\right) \\
& \geqslant c_{2} \xi_{n} Q^{\prime}\left(\xi_{n}\right)
\end{aligned}
$$

(by (4.10), for some $c_{2} \leqslant 1$)

$$
\geqslant\left(c_{2} \xi_{n}\right) Q^{\prime}\left(c_{2} \xi_{n}\right)
$$

as $c_{2} \leqslant 1$. We deduce $q_{n} \geqslant c_{2} \xi_{n}$.
At this stage we can prove assertion (3.8).
Lemma 4.5. Assume W^{2} is a regular weight. Then there exists c_{1} such that

$$
\begin{equation*}
\left|\left(p_{n-1} W\right)\left(x_{k n}\right)\right| \sim q_{n}^{-1 / 2}, \quad\left|x_{k n}\right| \leqslant c_{1} q_{n} \tag{4.16}
\end{equation*}
$$

Proof. In view of (3.4) it suffices to show

$$
\begin{equation*}
\left|\left(p_{n}, W\right)\left(x_{k n}\right)\right| \geqslant c q_{n}^{12}, \quad\left|x_{k n}\right| \leqslant c, q_{n} \tag{4.17}
\end{equation*}
$$

We shall use the identity

$$
\begin{equation*}
K_{n}(x, x)=\gamma_{n} \quad 1 / \gamma_{n}\left(p_{n}^{\prime}(x) p_{n-1}(x)-p_{n}(x) p_{n}^{\prime} \quad,(x)\right), \tag{4.18}
\end{equation*}
$$

which follows easily from the Christoffel-Darboux formula. Using (4.2) and (3.7) with $x=x_{k n}$, we obtain

$$
\begin{equation*}
c_{3}\left(n / q_{n}\right) W^{2}\left(x_{k n}\right) \leqslant c_{4} q_{n} p_{n}^{\prime}\left(x_{k n}\right) p_{n},\left(x_{k n}\right) . \tag{4.19}
\end{equation*}
$$

Now by the local Markov-Bernstein inequality, we have

$$
\begin{align*}
& \leqslant c n / q_{n}^{32} . \tag{4.20}
\end{align*}
$$

by (3.4), if δ is small enough. Then (4.19) and (4.20) yield

$$
c_{3} n / q_{n} \leqslant c_{5} n / q_{n}^{1,2}\left|p_{n \prime} \quad, W\right|\left(x_{k n}\right), \quad\left|x_{k n \prime}\right| \leqslant c q_{n} .
$$

which yields (4.17).
Proof of Theorem 3.7. Let $|x|<c q_{n}$. We use the technique of Nevai [22, p. 171].

$$
\begin{aligned}
l_{j n}^{2}(x) & =i_{i n}^{2} K_{n}^{2}\left(x, x_{j n}\right) \\
& \leqslant i_{i n}^{2} \dot{i}_{j n}{ }^{\prime} K_{n}(x, x)
\end{aligned}
$$

(by the Cauchy -Schwarz inequality)

$$
\leqslant c,
$$

by (4.6). Now either x lies between $x_{j}, 1, n$ and $x_{j n}$ or x lies between $x_{i n}$ and $x_{j+1, n}$. Let for simplicity, $x_{j n} \leqslant x \leqslant x_{j, 1 . n}$. Then by Lemma 9.32 [22. p. 170],

$$
l_{j} \quad 1 . n(x)+l_{j n}(x) \geqslant 1 .
$$

Now by (4.6) and (3.8),

$$
\left|\lambda_{j} \quad 1, n p_{n-1}\left(x_{j} 1, n\right)\right| \sim\left|\lambda_{j n} p_{n-1}\left(x_{j n}\right)\right| .
$$

Also $\quad l_{j-1, n}(x) \geqslant 0, \quad l_{j n}(x) \geqslant 0 \quad$ and $\operatorname{sign} \quad p_{n-1}\left(x_{j-1, n}\right)=-\operatorname{sign} p_{n} \quad\left(x_{m}\right)$. Hence using (2.3) and the fact that $\left|x-x_{i} \quad 1 . n\right| \geqslant\left|x-x_{j n}\right|$,

$$
l_{j}, 1, n(x) \leqslant c l_{j n}(x) .
$$

Therefore for $|x| \leqslant c q_{n}$, in all possible cases,

$$
l_{j n}^{2}(x) \sim 1 .
$$

Hence by (2.3)

$$
\begin{equation*}
i_{i n}^{2}\left(\gamma_{n-1} / \gamma_{n}\right)^{2}\left|p_{n}(x) /\left(x-x_{j n}\right)\right|^{2} p_{n}^{2} \quad\left(x_{j n}\right) \sim 1 \tag{4.21}
\end{equation*}
$$

The result now follows by (3.8), (3.7), (4.1) and (4.2).
Lemma 4.6. Let $0<p<2$. Let W^{2} satisfy the explicit assumptions in Definition 3.1. Then

$$
\begin{equation*}
\sum_{k=1}^{n} \lambda_{k n} W^{-p}\left(x_{k n}\right) \leqslant c, \quad n=1,2, \ldots \tag{4.22}
\end{equation*}
$$

Proof. It is obviously sufficient to show that

$$
\begin{equation*}
\lim _{n \rightarrow x} \sum_{k=1}^{n} i_{k n} W^{-p}\left(x_{k n}\right)=\int_{x}^{x} W^{-p}(x) W^{2}(x) d x \tag{4.23}
\end{equation*}
$$

To see this we note that Theorem 4 in [15] shows that there exists an entire function $G(x)$ with the following properties:

$$
\begin{aligned}
G(x) \sim W^{\prime p}(x) x^{2} & \text { as } x \rightarrow \infty \\
G^{(2 n)}(x) \geqslant 0, & n=1,2, \ldots, x \in \mathbb{R}
\end{aligned}
$$

and

$$
\int^{x} G(x) W^{2}(x) d x<x
$$

Since

$$
\lim _{n \rightarrow \infty} W^{-p}(x) / G(x)=0
$$

we can apply Theorem III. 1.6 [5, p. 93] to prove (4.22).
Without further mention let W^{2} denote a regular weight in what follows.
Lemma 4.7. There exists c_{1} such that
(i) for $|x|,\left|x_{k n}\right| \leqslant c_{1} q_{n}$,

$$
\begin{equation*}
\left|K_{n}\left(x, x_{k n}\right)\right| \sim\left(n / q_{n}\right)\left|x-x_{j n}\right| W^{-1}(x) W^{-1}\left(x_{k n}\right) /\left|x-x_{k n}\right|, \tag{4.24}
\end{equation*}
$$

(ii) for $|x|<c_{1} q_{n},\left|x_{k n}\right|>c_{2} q_{n}, c_{2}>c_{1}$, we have

$$
\begin{equation*}
\left|K_{n}\left(x, x_{k n}\right)\right| \sim q_{n}^{1 / 2}\left(n / q_{n}\right)\left|x-x_{j n}\right| W^{1}(x)\left|p_{n-1}\left(x_{k n}\right)\right| . \tag{4.25}
\end{equation*}
$$

Proof. (i) It follows from (2.2), (3.7), (3.8) and (3.17) that

$$
\begin{aligned}
\left|K_{n}\left(x, x_{k n}\right)\right| & =\left|\frac{\gamma_{n-1}}{\gamma_{n}} \frac{p_{n}(x) p_{n-1}\left(x_{k n}\right)}{x-x_{k n}}\right| \\
& \sim q_{n}\left(q_{n}^{-1 / 2} W^{-1}\left(x_{k n}\right)\right)\left(\left(n / q_{n}\right)\left|x-x_{j n}\right| q_{n}^{1 / 2} W^{-1}(x)\right) /\left|x-x_{k n}\right| \\
& \sim\left(n / q_{n}\right)\left|x-x_{j n}\right| W^{1}(x) W^{1}\left(x_{k n}\right) /\left|x-x_{k n}\right| .
\end{aligned}
$$

(ii) This follows similarly from (2.2), (3.7), (3.17), (4.3) and since

$$
\left|x-x_{k n}\right|>\left(c_{2}-c_{1}\right) q_{n}=c q_{n}
$$

Lemma 4.8. Let $0<p \leqslant 2$. Let

$$
\begin{equation*}
H_{n, p}^{(1)}(x)=\sum_{\substack{\mid x x_{k n \mid \leq 1} k \neq i}} \lambda_{k n}\left|K_{n}\left(x, x_{k n}\right)\right|^{p}, \quad x \in \mathbb{R} \tag{4.26}
\end{equation*}
$$

Then there exists c_{1} such that for $|x| \leqslant c_{1} q_{n}$,
(a) $H_{n, p}^{(1)}(x) \leqslant c\left[\left(n / q_{n}\right)\left|x-x_{i n}\right|\right]^{p}\left\{\left(n / q_{n}\right)^{p}{ }^{1} W^{2 \quad 2 p}(x)+W^{-p}(x)\right\}$,

$$
\begin{equation*}
1<p \leqslant 2 \tag{4.27}
\end{equation*}
$$

(b) $H_{n .1}^{(1)}(x) \leqslant c\left(n / q_{n}\right)\left|x-x_{j n}\right|\left\{\log n+W^{-1}(x)\right\}$,
(c) $H_{n, p}^{(1)}(x) \leqslant c\left[\left(n / q_{n}\right)\left|x-x_{j n}\right|\right]^{p}, \quad 0<p<1$.

Proof. First note that for $p=2$, by the Gauss-quadrature formula

$$
\begin{align*}
H_{n, p}(x) & =\sum_{k=1}^{n} \lambda_{k n} K_{n}^{2}\left(x, x_{k n}\right) \\
& =\int_{-\infty}^{\infty} K_{n}^{2}(x, t) W^{2}(t) d t \\
& =K_{n}(x, x) \leqslant c\left(n / q_{n}\right) W^{-2}(x), \quad|x| \leqslant c_{1} q_{n} \tag{4.30}
\end{align*}
$$

by (4.1). So we may assume $p<2$. Next, we note that it suffices to consider $x \geqslant 0$, as $H_{n, p}^{(1)}(x)$ is an even function. To see this we note that

$$
K_{n}\left(-x,-x_{k n}\right)=K_{n}\left(x, x_{k n}\right)
$$

since each orthogonal polynomial is either even or odd and further the zeros $x_{n n}, \ldots, x_{1 n}$ are symmetric about 0 . So let $x \geqslant 0$, and let $u \in\left(\left|x-x_{k n}\right|\right.$, $\left.\left|x-x_{k n}\right|+q_{n} / n\right)$. If first $x>x_{k n}$, then

$$
\begin{aligned}
x-u & \in\left(x-\left|x-x_{k n}\right|-q_{n} / n, \quad x-\left|x-x_{k n}\right|\right) \\
& =\left(x_{k n}-q_{n} / n, x_{k n}\right) .
\end{aligned}
$$

Since $W(y) \sim W\left(y+q_{n} / n\right)$ for $|y| \leqslant c_{1} q_{n}$, we have

$$
\begin{equation*}
W(x-u) \sim W\left(x_{k n}\right) . \tag{4.31}
\end{equation*}
$$

Secondly, if $x<x_{k n}$, then

$$
\begin{aligned}
x+u & \in\left(x+\left|x-x_{k n}\right|, \quad x+\left|x-x_{k n}\right|+q_{n} / n\right) \\
& =\left(x_{k n}, x_{k n}+q_{n} / n\right) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
W(x+u) \sim W\left(x_{k n}\right) \tag{4.32}
\end{equation*}
$$

Now as $x \geqslant 0$ and $u>0,|x-u| \leqslant x+u$, so that $W(x+u) \leqslant W(x-u)$. Then by (4.31) and (4.32),

$$
\begin{equation*}
W\left(x_{k n}\right) \leqslant c W(x-u), \tag{4.33}
\end{equation*}
$$

for $u \in\left(\left|x-x_{k n}\right|,\left|x-x_{k n}\right|+q_{n} / n\right)$ and uniformly for $0 \leqslant x<c_{1} q_{n}$. Furthermore for such u, if $k \neq j$, (4.4) shows that

$$
\begin{equation*}
u \leqslant q_{n} / n+\left|x-x_{k n}\right| \leqslant c\left|x-x_{k n}\right| . \tag{4.34}
\end{equation*}
$$

Next by (4.2), (4.24) and (4.26),

$$
\begin{aligned}
H_{n, p}^{(1)}(x) \leqslant & c\left(q_{n} / n\right)\left[\left(n / q_{n}\right)\left|x-x_{i n}\right|\right]^{p} W^{-p}(x) \sum_{\substack{\left|x-x_{k n}\right| \leqslant 1 \\
k \neq j}} W^{2-p}\left(x_{k n}\right) /\left|x-x_{k n}\right|^{p} \\
\leqslant & c\left[\left(n / q_{n}\right)\left|x-x_{j n}\right|\right]^{p} W^{-p}(x) \\
& \times \sum_{\substack{\left|x-x_{k n}\right| \leqslant 1 \\
k \neq 1}} \int_{\left|x \cdots x_{k, n}\right|}^{\left|x \cdot v_{k n}\right|+q_{n n}^{\prime \prime n}} W^{2 \cdot p}(x-u) u p^{p} d u
\end{aligned}
$$

(by (4.33) and (4.34))

$$
\begin{equation*}
\leqslant c\left[\left(n / q_{n}\right)\left|x-x_{m n}\right|\right]^{p} W^{-p}(x) \int_{q_{n, n}}^{1+q_{n} / n} W^{2-p}(x-u) u^{-p} d u \tag{4.35}
\end{equation*}
$$

Here we have used the fact that each interval of the form $J_{k}=\left(\left|x-x_{k n}\right|\right.$, $\left.\left|x-x_{h n}\right|+q_{n} / n\right)$ can intersect at most two intervals of the form $I_{1}=\left(/ q_{n} n\right.$, $\left.(l+1) q_{n} n\right), l=0,1,2, \ldots$, and is contained in the union of at most two such intervals. Furthermore, it follows from (4.4) that the number of intervals J_{h} intersecting any I_{i} is bounded above independent of x, at least for $|x|<c, q_{n}$ and some suitable c_{1}. Next by (4.35)

$$
\begin{equation*}
H_{n, p}^{(1)}(x) \leqslant c\left[\left(n / q_{n}\right)\left|x-x_{j n}\right|\right]^{p} W^{2} \quad 2 p(x) \int_{q_{n} n}^{2} W^{p} \quad(x) W^{2} \quad p(x-u) u{ }^{\prime \prime} d u \tag{4.36}
\end{equation*}
$$

If firstly $x \leqslant 2$, then $W^{\prime 2}(x) W^{\prime \prime}(x-u) \leqslant c$ for all $u \in\left[q_{n} / n, 2\right]$ and so

$$
\begin{equation*}
H_{n, p}^{(1)}(x) \leqslant\left. c\left[\left(n / q_{n}\right)\left|x-x_{m}\right|\right]^{p} W^{2}{ }^{2 p}(x)\right|_{q_{n}, n} ^{2} u^{n} d u \tag{4.37}
\end{equation*}
$$

For $x \leqslant 2$ (4.27), (4.28) and (4.29) follow easily from (4.37) as $W^{2} \quad 2 p(x) \leqslant 1$, if $0<p \leqslant 1$. Note too, that $\log \left(n / q_{n}\right) \sim \log n$, by (4.8). Let us suppose now $x>2$. Then for $u \in\left[q_{n} / n, 2\right]$,

$$
\begin{align*}
W^{p}{ }^{2}(x) W^{2}(x-u) & =\exp \left((2-p) \int_{x}^{2} Q^{\prime}(t) d t\right) \\
& \leqslant \exp c u Q^{\prime}(x) \tag{4.38}
\end{align*}
$$

as Q^{\prime} is positive and nondecreasing and $x>x-u>x-2>0$. Then by (4.36) and (4.38) for $2 \leqslant x \leqslant c, q_{n}$,

$$
\begin{aligned}
H_{n \cdot p}^{(1)}(x) & \leqslant c\left[\left(n / q_{n}\right)\left|x-x_{j n}\right|\right]^{\prime \prime} W^{2} \quad 2 p(x) \int_{q_{n} \prime n}^{2} \exp \left(c^{\prime} u Q^{\prime}(x)\right) u^{p} d u \\
& =c\left[\left(n / q_{n}\right)\left|x-x_{j \prime \prime}\right|\right]^{\prime \prime} W^{2} 2^{2 p}(x) \int_{Q^{\prime}(x) q_{n}, n}^{2 r Q^{\prime}(x)} e^{\prime \prime} w^{\prime \prime} d w\left(c Q^{\prime}(x)\right)^{p}
\end{aligned}
$$

(by the substitution $w=c Q^{\prime}(x) u$)

$$
\begin{align*}
\leqslant & c\left[n / q_{n}\left|x-x_{j n}\right|\right]^{p} W^{2}{ }^{2 p}(x)\left(Q^{\prime}(x)\right)^{p} \\
& \times\left[\int_{\cdot Q^{\prime}(x) q_{n} ; n}^{1} w^{p} d w+\int_{1}^{2 q\left(Q^{\prime}(x)\right.} e^{w} d w\right] \tag{4.39}
\end{align*}
$$

In the case where $c Q^{\prime}(x) q_{n} / n>1$ or $2 c Q^{\prime}(x)<1$, we omit, respectively, the first and second integrals in (4.39). Now let $1<p<2$. Then from (4.39) for $2 \leqslant x \leqslant c_{1} q_{n}$,

$$
\begin{equation*}
H_{n, p}^{(1)}(x) \leqslant c\left[\left(n / q_{n}\right)\left|x-x_{j n}\right|\right]^{p} W^{2} \cdot 2 p(x)\left[\left(n / q_{n}\right)^{p-1}+\left(Q^{\prime}(x)\right)^{p} \quad^{1} e^{2 c Q^{\prime \prime x}}\right] . \tag{4.40}
\end{equation*}
$$

From (4.27) and (4.40), we see that it suffices to prove that

$$
\begin{equation*}
W^{2 \cdot p}(x)\left(Q^{\prime}(x)\right)^{p \quad 1} e^{2 \cdot Q^{\prime}(x)}<c, \quad x \in[0, \infty) \tag{4.41}
\end{equation*}
$$

in order to complete the proof of (4.27). But the left member of (4.41) equals

$$
\begin{aligned}
& \exp \left(-(2-p) Q(x)+(p-1) \log Q^{\prime}(x)+2 c Q^{\prime}(x)\right) \\
& \quad \leqslant \exp (Q(x)\{p-2+c / x\})
\end{aligned}
$$

(by (4.10) and (4.11))

$$
\leqslant c_{1}
$$

since for large $x, p-2+c / x<0$. Hence we have proved (4.41) and also (4.27), for $|x| \leqslant c_{1} q_{n}$. The cases $p=1$ and $0<p<1$, follow similarly from (4.39). If $p<1$, we use the fact that $W^{2} \quad 2 p(w)<1$.

Lemma 4.9. Let $0<p<2$. There exists c such that for $|x|<c q_{n}$,

$$
\begin{equation*}
\lambda_{i n}\left|K_{n}\left(x, x_{j n}\right)\right|^{p} \sim\left(n / q_{n}\right)^{p-1} W^{2 \cdots 2 p}(x) \tag{4.42}
\end{equation*}
$$

Proof. We have by (4.1), (4.2) and (4.24) with $k=j$,

$$
\begin{aligned}
i_{k n}\left|K_{n}\left(x, x_{j n}\right)\right|^{p} & \sim q_{n} / n W^{2}\left(x_{j n}\right)\left[\left(n / q_{n}\right) W^{1}(x) W^{1}\left(x_{j n}\right)\right]^{p} \\
& \sim\left(n / q_{n}\right)^{p \cdot 1} W^{2 \cdots 2 p}(x)
\end{aligned}
$$

by (4.5).
Lemma 4.10. Let $0<p<2$. We define for a suitable choice of c,

$$
H_{n, p}^{(2)}(x)=\sum_{\substack{\left|x \cdot x_{k n}\right| \geqslant 1 \\\left|x_{k n}\right|<c q_{n}}} \lambda_{k n}\left|K_{n}\left(x, x_{k n}\right)\right|^{p} .
$$

Then there exists c_{1} such that uniformly for $|x|<c_{1} q_{n}$,

$$
H_{n, p}^{(2)}(x) \leqslant c\left[\left(n / q_{n}\right)\left|x-x_{j n}\right|\right]^{p} W^{p}(x) .
$$

Proof. It follows from (4.24) and (4.22) that

$$
\begin{aligned}
H_{n . p}^{(2)}(x) & \leqslant c\left[\left(n / q_{n}\right)\left|x-x_{j n}\right|\right]^{p} W^{-p}(x) \sum_{k=1}^{n} \lambda_{k n} W^{-p}\left(x_{k n}\right) \\
& \leqslant c\left[\left(n / q_{n}\right)\left|x-x_{j n}\right|\right]^{p} W^{p}(x) .
\end{aligned}
$$

Lemma 4.11. Let $0<p<2$. Let c be as in Lemma 4.10 and let

$$
H_{n, p}^{(3)}(x)=\sum_{\left|\cdot x_{k n}\right|>\left(q_{n}\right.} \lambda_{k n}\left|K_{n}\left(x, x_{k n}\right)\right|^{p} .
$$

Then there exists $c_{1}<c$ such that uniformly for $|x|<c_{1} q_{n}$,

$$
H_{n, p}^{(3)}(x) \leqslant c q_{n}^{p / 2}\left[\left(n / q_{n}\right)\left|x-x_{j n}\right|\right]^{p} W^{p}(x) .
$$

Proof. By (4.25)

$$
\begin{aligned}
H_{n, p}^{(3)}(x) & \leqslant c \sum_{\left|x_{k n}\right|>c q_{n}} \lambda_{k n}\left|p_{n \cdot 1}\left(x_{k n}\right)\right|^{p}\left\{q_{n}^{p / 2}\left[\left(n / q_{n}\right)\left|x-x_{i n}\right|\right]^{p} W^{-p}(x)\right\} \\
& \leqslant c q_{n}^{-p / 2}\left[\left(n / q_{n}\right)\left|x-x_{j n}\right|\right]^{p} W^{p}(x)\left(\sum_{\left|k_{k n}\right|>c q_{n}} i_{k_{n}} p_{n}^{2} \quad\left(x_{k n}\right)\right)^{p, 2}
\end{aligned}
$$

(by Hölder's inequality)

$$
\leqslant c q_{n}^{p / 2}\left[\left(n / q_{n}\right)\left|x-x_{j n}\right|\right]^{p} W{ }^{p}(x) .
$$

Proof of Theorem 3.5. First let $0<p<2$. The upper bound now follows directly from Lemmas 4.8-4.11 for $|x|<c_{1} q_{n}, n$ sufficiently large, and noting that by (4.4),

$$
\begin{equation*}
\left[\left(n / q_{n}\right)\left|x-x_{j n}\right|\right]^{p} \leqslant c . \tag{4.43}
\end{equation*}
$$

The case $p=2$ follows from (4.30).
Proof of Theorem 3.6. It suffices to consider $x \geqslant 0$ as $H_{n, p}$ is even. We suppose $x>2$. The proof for $0 \leqslant x<2$ is similar. Now by (4.1) and (4.24) for $x,\left|x_{k n}\right|<c_{1} q_{n}$,

$$
\begin{align*}
\lambda_{k n}\left|K_{n}\left(x, x_{k n}\right)\right|^{p} \geqslant & c\left(q_{n} / n\right) W^{2}\left(x_{k n}\right) \\
& \times\left[\left(n / q_{n}\right)\left|x-x_{j n}\right| W^{1}(x) W^{-1}\left(x_{k n}\right) /\left|x-x_{k n}\right|\right]^{p} \\
\geqslant & c q_{n} / n W^{r}(x) W^{2} p\left(x_{k n}\right)\left|x-x_{k n}\right|^{p}\left[n / q_{n}\left|x-x_{m}\right|\right]^{p} . \tag{4.44}
\end{align*}
$$

Now let us consider the sum over all abscissas $x_{k n}$ which fall in (0,1). By the separation property of the zeros the number of such $x_{k n}$ is order n / q_{n}. Therefore if $2<x<c q_{n}$,

$$
\begin{align*}
\sum_{0<x_{k n}<1} \hat{i}_{k n}\left|K_{n}\left(x, x_{k n}\right)\right|^{p} & \geqslant c W^{2-p}(1) W^{-p}(x) x^{p}\left[n / q_{n}\left|x-x_{i n}\right|\right]^{p} \\
& =c x^{-p} W^{-p}(x)\left[n / q_{n}\left|x-x_{i n}\right|\right]^{p} . \tag{4.45}
\end{align*}
$$

Again by (4.44) and using the fact that by (4.4)

$$
\begin{aligned}
& x_{h n}-x_{k \cdot r \cdot n}>c r q_{n} / n, \\
& \sum_{1<x_{k, n}<x} i_{k n}\left|K_{n}\left(x, x_{k n}\right)\right|^{p} \\
& \geqslant c W^{2} z^{\prime \prime}(x) q_{n} / n\left[n / q_{n}\left|x-x_{j n}\right|\right]^{p} \quad \sum_{1<x_{n}<x}\left|x-x_{k n}\right| \\
& \geqslant c W^{2} \quad{ }^{2 p}(x) q_{n} / n\left[n / q_{n}\left|x-x_{i n}\right|\right]^{p} \sum_{1 \leqslant r=r=n\left(q_{n}\right.}\left|r q_{n} n\right| \\
& \geqslant c\left(n / q_{n}\right)^{\prime \prime}{ }^{\prime} W^{2}{ }^{2 r}(x)\left[n / q_{n}\left|x-x_{j n}\right|\right]^{p} \sum_{1 \leqslant 1,12 q_{n}} r^{r} . \quad \text { (4.46) }
\end{aligned}
$$

Now it is easily seen that

$$
\sum_{1<r \leqslant q^{\prime} q_{n}} r^{\prime} \geqslant\left(\begin{array}{ll}
\left(n \prime q_{n}\right)^{\prime} \quad{ }^{\prime}, & 0<p<1 \tag{4.47}\\
c \log n, & p=1 \\
c, & 1<p \leqslant 2
\end{array}\right.
$$

Now since $x>2,(0,1)$ and $(x-1, x)$ are disjoint intervals. The result for $p \neq 1$, now follows from (4.45) and (4.42). For $p=1$ the result follows from (4.45). (4.42), (4.46), and (4.47).

In order to prove Theorem 3.3 on Lagrange interpolation for the weights $W_{m}(x)$, we must derive as well, an upper bound for $H_{n, p}(x)$ for $|x|>c, q_{n}$. To this end we prove:

Lemma 4.12. For all $x \in R$.
(i)
(ii) Let c, be an arbitrary constant. Then

$$
\sum_{x_{k n}>114 n} i_{k n}\left|K_{n}\left(x, x_{k n}\right)\right|^{n} \leqslant c W^{\prime \prime}(x), \quad 1<p<2
$$

Proof. (i) Let $0<p<2$. It follows from Hölder's inequality, (4.30) and (4.22) that

$$
\begin{align*}
& \sum_{k=1}^{n} \lambda_{k n}\left|K_{n}\left(x, x_{k n}\right)\right|^{p} W^{l n} \quad 212\left(x_{k n}\right) \\
& \left.\leqslant\left(\sum_{k=1}^{n} \lambda_{k n} K_{n}^{2}\left(x, x_{k n}\right)\right)^{p / 2}\left(\sum_{k=1}^{n} \lambda_{k n} W^{\prime(p-2) / 2)(2 / 2} p\right)\right)^{12 p / 2} \\
& \leqslant K_{n}(x, x)^{n / 2}\left(\sum_{k=1}^{n} \lambda_{k n} W^{\prime}\left(x_{k n}\right)\right)^{12 p, 2} \\
& \leqslant c K_{n}(x, x)^{p: 2} \text {. } \tag{4.48}
\end{align*}
$$

Next assume $0<p \leqslant 1$. Now $\left|x_{k n}\right|>Q{ }^{1}\left(\log n / q_{n}\right)$ implies that $Q\left(x_{k n}\right) \geqslant \log n / q_{n}$. Hence

$$
\begin{equation*}
W\left(x_{k n}\right)=\exp \left(-Q\left(x_{k n}\right)\right) \leqslant q_{n} / n . \tag{4.49}
\end{equation*}
$$

Therefore if $S=\left\{x_{k n}:\left|x_{k n}\right| \geqslant Q{ }^{\prime}\left(\log n / q_{n}\right)\right\}$

$$
\begin{aligned}
\sum_{S} i_{k n}\left|K_{n}\left(x, x_{k n}\right)\right|^{p} & \left.\left.\leqslant \max _{S}\left\{W^{\prime 2} p\right)^{2}\left(x_{k n}\right)\right\} \sum_{k=1}^{n} i_{k n}\left|K_{n}\left(x, x_{k n}\right)\right|^{p} W^{p} 2\right)^{2}\left(x_{k n}\right) \\
& \left.\leqslant c\left(q_{n} / n\right)^{\prime 2} p\right), 2 K_{n}(x, x)^{p 2}
\end{aligned}
$$

(by (4.48) and (4.49))

$$
\leqslant c\left(q_{n} / n\right)^{12} p^{p / 2}\left(\left(n / q_{n}\right) W^{2}(x)\right)^{p^{2}}
$$

(by (4.1))

$$
\leqslant c\left(n / q_{n}\right)^{p}{ }^{1} W r^{\prime}(x) .
$$

(ii) Let $1<p<2$. Now $\left|x_{k n}\right|>c_{1} q_{n}$ implies

$$
Q\left(x_{k n}\right) \geqslant Q\left(c_{1} q_{n}\right) \geqslant c_{2} q_{n}^{2},
$$

by (4.7). Therefore by (4.8)

$$
\begin{equation*}
W\left(x_{k n}\right)=\exp \left(-Q\left(x_{k n}\right)\right) \leqslant \exp \left(-c_{3} n^{2 \cdot 11+o}\right) \tag{4.50}
\end{equation*}
$$

Hence for n sufficiently large,

$$
\begin{aligned}
\sum_{\left|x_{k n}\right|>c_{1} q_{n}} \lambda_{k n}\left|K_{n}\left(x, x_{k n}\right)\right|^{p} \leqslant & \left.\max _{\left|x_{k n}\right|>c_{1} q_{n}}\left\{W^{\prime 2} p\right)^{\prime 2}\left(x_{k n}\right)\right\}^{\prime} \\
& \times \sum_{k=1}^{n} i_{k n}\left|K_{n}\left(x, x_{k n}\right)\right|^{p} W^{(p, 212}\left(x_{k n}\right) \\
\leqslant & \left(n / q_{n}\right)^{p / 2} \exp \left(-c((2-p) / 2) n^{2(1+c)}\right) W^{-p}(x)
\end{aligned}
$$

(by (4.48), (4.1) and (4.50))

$$
\leqslant c W^{P}(x)
$$

Theorem 4.13. Let $W(x)=W_{m}(x), \quad m=2,4,6, \ldots . \quad$ In the case $W(x)=W_{2}(x)$ let $x \in \mathbb{R}$. Otherwise let $\varepsilon>0$ and let $x \in \mathbb{R} \backslash\left(2 a_{n}-\varepsilon n^{1 m}\right.$, $\left.2 a_{n}+\varepsilon n^{-1 / m}\right)$. Then for $n=1,2,3, \ldots$
(i) $H_{m, p}(x) \leqslant c\left\{\left(n^{1} 1 m\right)^{p-1} W^{2 \cdots 2 p}(x)+W^{p}(x)\right\}, \quad 1<p \leqslant 2$.
(ii) $H_{n, 1}(x) \leqslant c\left\{\log n+W^{-1}(x)\right\}$.
(iii) $H_{n, p}(x) \leqslant c W^{-p}(x), \quad 0<p<1$.

Proof. The results for $|x|<c_{1} q_{n}$ follow from Theorem 3.5, (3.6) and (4.43). Therefore let $|x| \geqslant c_{1} q_{n}$. Now by (4.7) for n sufficiently large,

$$
Q^{-1}\left(\log \left(n / q_{n}\right)\right)<c\left(\log \left(n / q_{n}\right)\right)^{1 \cdot 2}<c(\log n)^{1 / 2}<c_{2} q_{n}
$$

It follows from Lemma 4.12 for $0<p<2$ that we need only consider the sum over abscissas $x_{k n}$ which satisfy $\left|x_{k n}\right|<c_{2} q_{n}, c_{2}<c_{1}$. Now by (2.2), (3.7), (3.8) and (4.22)

$$
\begin{align*}
\sum_{\left|M_{k n}\right|<c o q_{n}} \lambda_{k n}\left|K_{n}\left(x, x_{k n}\right)\right|^{p} & \leqslant c q_{n}^{p 2}\left|p_{n}(x)\right|^{p} \sum_{k=1}^{n} i_{k n} W{ }^{p}\left(x_{k n}\right) \\
& \leqslant c q_{n}^{p 2}\left|p_{n}(x)\right|^{p} . \tag{4.52}
\end{align*}
$$

At this point we require a bound for $\left|p_{n}(x)\right|,|x|>c_{1} q_{n}$. For the weights $W_{m}(x)$ Lubinsky [16] proved the following inequality:

$$
W_{m}^{2}(x) p_{n}^{2}(x)\left|1-|x|^{2} /\left(2 a_{n}\right)^{2}\right| \leqslant c n^{1: m}, \quad x \in \mathbb{R}
$$

We deduce from this that for $x \in \mathbb{R} \backslash\left(2 a_{n}-\varepsilon n^{-1 m}, 2 a_{n}+\varepsilon n^{1: m}\right)$

$$
\begin{equation*}
p_{n}^{2}(x) W_{m}^{2}(x) \leqslant c n^{1 ; m} \tag{4.53}
\end{equation*}
$$

where the constant in (4.53) depends on $\varepsilon>0$. If $m>2$ the result follows from (3.6), (4.52) and (4.53) for n sufficiently large. In the case $m=2$, (4.53) holds for all $x \in \mathbb{R},[26$, p. 242, equation 8.91 .10$]$. Hence the result by (3.6) and (4.52). To extend the results to all n, we note that by Hölder's inequality and (4.1) for $n<n_{0}, n_{0}$ fixed,

$$
\begin{aligned}
H_{n, p}(x) & \leqslant c K_{n}(x, x)^{p i 2} \\
& \leqslant c n_{o}^{p / 2} W^{p}(x) \\
& =c W^{-p}(x) .
\end{aligned}
$$

For $W(x)=W_{m}(x), m>2$, the results of Bonan and Clark [4] may be used to fill the gap ($2 a_{n}-\varepsilon n^{1 / m}, 2 a_{n}+\delta n^{1 / m}$).

5. Pointwise Convergence of Lagrange Interpolation

We now apply the bounds for the Lebesgue function $H_{n, 1}(x)$, to prove pointwise convergence of Lagrange interpolation for uniformly continuous functions $f(x)$.

Proof of Theorem 3.2. Throughout the proof we use c_{1} to denote a constant for which Theorem 3.5 is valid. Furthermore we use c_{2} to denote a fixed constant which satisfies $c_{2}>2$ and $x_{1 n}<c_{2} q_{n}$. Now let $f_{n}(x)=$ $f\left(c, q_{n} x\right)$. Then

$$
\begin{equation*}
\omega_{r}(f, \delta)=\omega_{r}\left(f, c_{2} q_{n} \delta\right) \leqslant c \omega_{r}\left(f, q_{n} \delta\right) . \tag{5.1}
\end{equation*}
$$

Now we can find a polynomial $P(x)$ of degree $\leqslant n-1$ so that for $|x| \leqslant 1$, $\left|P_{n},(x)\right| \leqslant 2\left\|f_{n}\right\|$, and by Jackson's theorem (see Lorentz [13, p. 58, equation 10] for a proof for trigonometric polynomials)

$$
\begin{aligned}
\left|f_{n}(x)-P_{n} \quad(x)\right| & \leqslant c_{r} \omega_{r}\left(f_{n}, n^{1}\right) \\
& \leqslant c c_{r} \omega_{r}\left(f, q_{n} / n\right)
\end{aligned}
$$

by (5.1). Thus if $P_{n}^{*} \quad 1(x)=P_{n} \quad\left(x / c_{2} q_{n}\right), x \in \mathbb{R}$,

$$
\begin{equation*}
\left|f(x)-P_{n}^{*} \quad(x)\right| \leqslant c c_{r} \omega_{r}\left(f ; q_{n} / n\right), \quad|x|<c_{2} q_{n} \tag{5.2}
\end{equation*}
$$

Now by (5.2), (3.15) and the identity

$$
P_{n} \quad\left(x / c_{2} q_{n}\right)=\sum_{k=1}^{n} l_{k n}(x) P_{n-1}\left(x / c_{2} q_{n}\right),
$$

it follows that for $|x|<c_{1} q_{n}$,

$$
\begin{align*}
& \left|f(x)-\sum_{k-1}^{n} l_{k n}(x) f\left(x_{k n}\right)\right| \\
& \quad \leqslant\left|f(x)-P_{n} \quad\right|\left(x / c_{2} q_{n}\right)\left|+\sum_{k=1}^{n}\right| l_{k n}(x)| | f\left(x_{k n}\right)-P_{n} \quad 1\left(x_{k n} / c_{2} q_{n}\right) \mid \tag{5.3}\\
& \quad \leqslant c_{r} \omega_{r}\left(f ; q_{n} / n\right)\left\{\left(n / q_{n}\right)\left|x-x_{j n}\right|\left[\log n+W^{1}(x)\right]+c\right\} .
\end{align*}
$$

Proof of Theorem 3.3. Let c_{2} be as in the proof of Theorem 3.2 above. As inequality (5.3) is valid for $|x|<c_{2} q_{n}$ we can apply (4.51) to obtain the upper half of (3.10). By Theorem 4.13 we need not omit the interval of
length $2 \varepsilon n^{-1 m m}$ around $2 a_{n}$ in the case $m=2$. We prove the result for $|\cdot x|>c_{2} q_{n}$ as follows:

$$
\begin{align*}
\left|f(x)-L_{n}(f ; x)\right| & \leqslant|f(x)|+\left|L_{n}(f ; x)\right| \\
& \leqslant W\left(c_{2} q_{n}\right)\|f\| W^{-1}(x)+\left|L_{n}(f ; x)\right| . \tag{5.4}
\end{align*}
$$

As $c_{2}>1$.

$$
\begin{equation*}
W_{m}\left(c_{2} q_{n}\right)<W_{m}\left(q_{n}\right)=e^{n i m} . \tag{5.5}
\end{equation*}
$$

Also, by the infinite-finite range inequality [Lubinsky, 14, Theorem A],

$$
\begin{aligned}
\left|x^{n} L_{n}(f ; x) W(x)\right| & \leqslant \max _{x \in \mathbb{R}}\left|x^{n} L_{n}(f ; x) W(x)\right| \\
& \leqslant \max _{|x| \leqslant c q_{n}}\left|x^{n} L_{n}(f ; x) W(x)\right| \\
& \leqslant\left(c q_{n}\right)^{n} \max _{|x| \leqslant c q_{n}}\left|L_{n}(f ; x) W(x)\right| .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left|L_{n}(f ; x)\right| & \leqslant\left(c q_{n} / x\right)^{n} W^{-1}(x) \max _{|x| \leqslant<q_{n}}\left|L_{n}(f ; x) W(x)\right| \\
& \leqslant\left(c q_{n} / x\right)^{n} W^{-1}(x)\|f\| \max _{|x| \leqslant c q_{n}}\left\{\sum_{k=1}^{n} i_{k n}\left|K_{n}\left(x, x_{k n}\right)\right| W(x)\right\} \\
& \leqslant c_{3}\left(c q_{n} / x\right)^{n} W^{1}(x)\|f\| \max _{|x| \leqslant c q_{n}}\left\{K_{n}(x, x) W^{2}(x)\right\}^{1: 2}
\end{aligned}
$$

(by the Cauchy Schwarz inequality)

$$
\leqslant c_{3}\left(n / q_{n}\right)^{1 / 2}\left(c q_{n} / x\right)^{n}\|f\| W^{-1}(x)
$$

(by (4.1))

$$
\begin{equation*}
\leqslant c_{3} c_{1}^{n}\|f\| W^{\prime}(x), \quad|x|>c_{2} q_{n}, \tag{5.6}
\end{equation*}
$$

c_{2} sufficiently large. The lower half of (3.10) now follows from (5.4), (5.5) and (5.6).
Proof of Theorem 3.4. We define the function $f_{n}(t)$ as follows. Let $f_{n}\left(x_{k n}\right)=\operatorname{sign} I_{k n}(x)$ and let f_{n} be continuous between the zeros $x_{k n}, x_{k+1, n}$ and satisfy $\left\|f_{n}\right\| \leqslant 1$. For example, let f_{n} interpolate linearly between $x_{k+1, n}$ and $x_{k n}$ and let $f_{n}(t)=f_{n}\left(x_{1 n}\right), t>x_{1 n}$ and $f_{n}(t)=f_{n}\left(x_{n n}\right), t<x_{m n}$.

Then

$$
\begin{equation*}
\omega_{r}\left(f_{n} ; \delta\right) \leqslant 2^{r} \| f_{n} \leqslant \leqslant 2^{\prime} \tag{5.7}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{n}\left(f_{n} ; x\right)=\sum_{k=1}^{n}\left|I_{k n}(x)\right| . \tag{5.8}
\end{equation*}
$$

Also

$$
\left|L_{n}\left(f_{n} ; x\right)-f(x)\right| \geqslant \mid f_{n} \|\left[H_{n, 1}(x)-1\right] .
$$

The result now follows if n is sufficiently large, by applying (5.7) and (3.16) to the above.

Acknowleidgment

I thank Dr. D. S. Lubinsky for introducing me to the subject of Lagrange interpolation. and for his helpful advice during the course of the research.

Referfnces

1. W. C. Ballidry. Estimates of Christoffel functions of generalized Freud-type weights, J. Approx. Theory 46 (1986), 217229.
2. S. Bonan, "Weighted Mean Convergence of Lagrange Interpolation." Ph.D. Thesis. Ohio State Lniversity, 1982.
3. S. Bonan. Applications of G. Freuds theory. 1. in "Approximation Theory IV" (C. K. Chui at al., Eds.), Academic Press, New York. 1984.
4. S. Bovan, and D. Clark. Estimates of orthogonal polynomials with weight expl - $\boldsymbol{r}^{\prime \prime \prime}$) m an even positive integer, J. Approx. Theory $\mathbf{4 6}$ (1986). 408410.
5. G. Freed, "Orthogonal Polynomials." Pergamon, Budapest, 1966.
6. G. Frelid, Lagrangesche Interpolation über dic Nullstellen der Hermiteschen Orthogonalpolynome, Studia Sci. Mah. Hungar. 4 (1969), 179-190.
7. G. Freud, On the greatest zero of an orthogonal polynomial, II. Actu Sci. Muth. (Szeged) 36 (1974), 49-54.
8. G. Freud, On Markov-Bernstein-type inequalities and their applications. J. Approx. Theory 19 (1977), 22-37.
9. O. Kis, Lagrange interpolation at the zeros of Sonine Markov polynomials, Acta Math. Acad. Sci. Hungur. 23 (1972), 389 417. [Russian]
10. A. Knopfmacher, "Linear Operators and Christoffel Functions Associated with Orthogonal Polynomials," Ph.D. Thesis, University of the Witwatersrand, Johannesburg, 1985.
11. A. Knopfmacher, Positive convergent approximation operators associated with orthogonal polynomials for weights on the whole real line. J. Approx. Theory 46 (1986). 182-203.
12. A. Knopfmacher and D. Lubinsky, Mean convergence of Lagrange interpolation for Freud's weights with applications to product integration rules, J. Comp. App. Math. 17 (1987), 79-108.
13. G. C. Lorentz., "Approximation of Functions," Holt, Rinehard \& Winston, New York, 1966.
14. D. Lubinsky, A weighted polynomial inequality, Proc. Amer. Math. Soc. 92 (1984), 263-267.
15. D. Llbinsky, Gaussian quadrature, weights on the whole real line and even entire functions with nonnegative even order derivatives, J. Approx. Theory 46 (1986), 297-313.
16. D. Lubinsky. On Nevai's bounds for orthogonal polynomials with exponential weights, J. Approx. Theory, to appear.
17. D. Lebinsky. Estimates of Freud-Christoffel functions for some weights with the whole real line as support, J. Approx. Theory: to appear.
18. P. G. Neval, Lagrange interpolation at the zeros of Laguerre polynomials, Mat. Lapok 22 (1971), 149-164. [Hungarian]
19. P. G. Nrval, Convergence of Lagrange interpolation based on the Laguerre nodes. Publ. Math. Dehrecen 20 (1973), 235-239. [Russian]
20. P. G. Nevai, Notes on interpolation, Acta Math. Acad. Sci. Hungar. 25(1974), 123-144. [Russian]
21. P. G Neval. Lagrange interpolation at zeros of orthogonal polynomials, in "Approximation Theory II" (G.C. Lorentz et al., Eds.), Academic Press, New York, 1976.
22. P. G. Neval. "Orthogonal Polynomials," Memoirs of the American Mathematical Society. No. 213. Providence, R.I., 1979.
23. P. G. Neval, Mean convergence of Lagrange interpolation. II, J. Approx. Theory 30 (1980), 263-276.
24. P. G. Neval, Exact bounds for orthogonal polynomials with exponential weights, J. Approx. Theorl: in press.
25. P. G. Nevai. Gcza Freud, orthogonal polynomials and Christoffel functions. (A case study. J. Approx. Theory 48 (1986), 3- 167.
26. G. Szego. "Orthogonal Polynomials," 3rd ed. Amer. Math. Soc., Providence, R.I., 1967.

[^0]: * Based on work supported by the Research Grants Division of the Council for Scientific and Industrial Research.

