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Under various assumptions on a weight W'. with support R we obtain rates for
the pointwise convergence of Lagrange interpolation based at the zeros of the
orthonormal polynomials with respect to W'. in the case of a uniformly continuous
function I(x). The weights considered include W",(.\) ~ cxp( - Hyl'" l. m an even
positive integer. The technique used generalizes that of Freud. who considered
pomtwise convergence of Lagrange interpolation in the case of the Hermite weight.
However. even for the Hermite weight, our results refine and extend the upper and
lower bounds of Freud. We establish as well. as preliminary results, upper and
lower bounds for generalized Lebesgue functions and for absolute values of the
orthogonal polynomials associated with W;,(x). '1')S7 AcademIc Pres>. Inc

1. INTRODl;CTION

Convergence of Lagrange interpolation hased at the zeros of orthogonal
polynomials is a subject which has been widely investigated in the case of
weights on a finite interval. For a comprehensive survey of what has been
achieved, see Nevai [25,21]. However, owing to the present dearth of
results on orthonormal polynomials on the whole real line, Lagrange inter
polation for weights with unbounded support has been investigated
primarily in the case of the Hermite weight.

Pointwise convergence of Lagrange interpolation for the Hermite weight
was proved first by Freud [6J, while Nevai [23J proved results on mean
convergence of Lagrange interpolation. Bonan [2J obtained necessary and
sufficient conditions for the mean convergence of Lagrange interpolation
for the weights I-"r exp( - Xl), CL > - I, in L p' 0 < p ~XJ. Sharp results for
the pointwise convergence of Lagrange interpolation for weights
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I.\r exp( - x 2
), 'l> - I, were established by Kis [9]. The case of the

Laguerre weight has been investigated in detail by Nevai [18 20]. Recently
Knopfmacher and Lubinsky [12] considered mean convergence of
Lagrange interpolation for a general class of Freud weights.

In this paper we prove pointwise convergence of Lagrange interpolation
for a subclass of the weights W 2 = exp( - 2Q(x)), introduced by Freud [8],
and which include the weights Wm(x)=exp(-~I),r), In an even, positive
integer. The technique used, involves a generalization of the ideas of Freud
[6]. In addition we make extensive use of properties of exponential weights
proved by Freud [8] and bounds for orthonormal polynomials proved by
Bonan [3] and Nevai [24].

However, even for the Hermite weight, our results extend those of Freud
in one major aspect The bounds Freud obtained in Satz 2 [6], take no
account of the relative position of x and the zeros x k " of the orthonormal
polynomial p,,(x) associated with W 2

. We show, as one might expect, that
since the Lagrange interpolation polynomial interpolates to the function at
the zeros x k ", one can obtain enhanced rates of convergence for values of x
suitably close to a zero Xk,,' This is shown in Theorem 3.2, for all the
weights considered.

Freud proved, in addition, that for a suitably defined function I(x), his
bounds were sharp, but only for certain discrete values of x, namely the
zeros of Pill I(X). In Theorem 3,4 we show that our bounds are in general
sharp for all values of x lying in an interval which can grow with n.

In Section 2, we introduce the notation that will be used throughout the
paper. Furthermore, we state our main results in Section 3, and they are
proved in Sections 4 and 5.

2. NOTATlON

Let W' denote an even, nonnegative function on IR: with all moments

, I

I i - I x" W 2(x) dx,n -, n = 0, I, 2, ... , finite.

Also let [p,,( W2, x)) = [PIl(X)) be the sequence of orthonormal
polynomials with respect to W 2

, that is,

mien

m=n.

Let ~'Il be the leading coefficient of PIl' n = 0, L 2, .... Let an = '/n 1

n=I,2,3, .... We assume throughout that W(x)=exp(-Q(x)), where
Q(x) is even positive and twiee differentiable in (O,X!) and Q' is positive
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and nondecreasing in (O,XJ). These weights were considered in some detail
by Freud ([7, 8J and references therein). Let {j" denote the unique positive
solution of the equation

(j"Q'({j,,) = 11.

Note that the sequence [(j,,) is increasing and as shown in [8, p. 22 J

(2.1 )

In keeping with the notation of Freud and others, K)x, 1') denotes the 11th
kernel of the orthogonal expansion,

" I

K,,(.\, r) = I pdY) PAl r)
A-= ()

"ill .Y- \'
(2.2)

(the Christoffel- Darboux formula) and ;.,,( we. x) == ;/,c\,) denotes the
Christoffel function

Furthermore

k = 1. 2..... 11.

We denote the zeros of p,,(x) by

xA'" k=I.2.... ,I1.wherex""<x,, 1."<"'<.'11,,.

Throughout given x, let X/II denote the closest zero of p,,(x) to x. We define
.'1/" to be the closest zero of p)x) on the left, in the event that x lies midway
between two zeros.

The fundamental polynomials of Lagrange interpolation are

I ( ) _. ~PIl(X)P"_I(Xk")
kn X - A kn '\1 ~ ,

tn ,\-Xko

k = 1,2, ... , n, (2.3 )

and the Lagrange interpolation polynomial of degree at most n -' I IS

"L,l/; x) = I Ikn(x)/(xk,,)·
A~I

(2.4 )
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For convenience we define

"
H",)x)= L )'k"IK,,(x,xk,,)!P

k ,

for p > 0, n = I, 2, ''''

Let f( x) be a bounded measurable function on (- (:I:';, cr,;). We define the
rth modulus of continuity off by

(0,(/;6)= )7,r~':f l\tJ:}~I),f(X+Vh)l, 6>0.

We use the usual norm notation. For example,

Ilfll, = sup If(x)l·
\-(:R

Throughout c, c" C2, ... will denote positive constants independent of nand
x. For notational convenience the constants will not be numbered except in
a case where confusion may arise. Thus c does not necessarily denote the
same constant from line to line.

By f(x)~g(x) we denote the condition c, ~f(x)/g(x)~c2 for all
relevant x.

The usual 0, 0 notation will be used.

3. MAIN RESULTS

The class of weights considered is as follows:

DEFINITION 3.1. W 2 = exp( - 2Q) is a regular weight if it satisfies

(a) Explicit Assumptions. Q is an even, convex twice differentiable
function in (- x, x) with Q(x) > 0 and Q'(x) > 0 for x E (0, Xl) and

xQ"(x)/Q'(x) ~ c,

Q'(2x)/Q'(x) > 1+ c,

(b) Implicit Assumptions.

o<x< x,

x large enough.

(3.1 )

(3.2)

(3.3 )

(3.4 )

The explicit assumptions can be weakened substantially for the required
properties of W 2 to hold. In fact (3.3) is implied by the other conditions on
Q. However, for ease of reference, we retain the restrictions in the above
form.
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The implicit assumption (3.4) is essential for our own proofs. We note in
particular, that the weights

Wm(x) = exp( -1 x m), m=2, 4,6, ... , (3.5)

satisfy (3.4) (Bonan [3], Nevai [24]). Of course for Wm(x), we have by
(2.1 )

q" = (2n/m)'m. (3.6 )

In addition it has been proved [I, Theorem 3.5; 10, Chap. 2] that if W"
satisfies the explicit assumptions of Definition 3.1

GfI=/-'n 1 ~q". (3.7)

We shall prove as a consequence of (3.1 ) to (3.4) that W 2 satisfies

(3.8)

The results on Lagrange interpolation can now be stated.

THEOREM 3.2. Let W" he a regular }I·eight. For all uniformly continuous
functions f(x) and all natural r, there exists c, such that uniformly for

Ixl <c,qll'

If(x) - L,,(f; x)1 ~ c, wAf; q,)n){ (n/qll)lx - XI" I[log n + W I(X)J + c}.

(3.9)

THEOREM 3.3. Let W(x) = Wm(x), m =2,4,6, .... Let I: > O. Let r he a
positive integer. For all uniformly continuous functions f(x) there exist C2 and
c, > I with the following properties:

Ilfll W-I(x) C I ", (3.10)

In the case of the Hermite weight we need not omit the interval
(2a ll -sn 1/2, 2all +sn- I

/
2

). For m>2, the results of Bonan and Clark [4J
can be used to fill the gap.

The following result shows that we can define a function f(x) for which
the rates of convergence of Theorem 3.2 are substantially best possible for
all Ixl < cqw
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THEOREM 3.4. Let W 2 be a regular weight. Then there exists C2 and
fimctions[;, depending on n and x, 11= 1, 2, .... such that for Ix\ < C 1q".

If;,(x) - L,,(f; xli

~c2 r(t)r(j~,;q,,!n){(n!q,,)lx~.\>I[logn+(I+lxl) 1 W I(x)J-I].

(3.11)

In order to prove these results we need to obtain upper and lower
bounds for the Lebesgue function

"I Ilkt/(x)!.
k 1

In fact we will obtain bounds for the generalized Lebesgue function

"
H".)x)= I I·k" IK,,(x. Xk"W'.

k~I

(3.12 )

(3.13 )

for 0 < P~ 2. H" 1(x) is the Lebesgue function (3.12). For the Hermite
weight, Ixl < cn 12, the upper bound (3.15) is better than that of [6, Satz I]
for Ix - x," 1= o(qni'n). Also, the lower bound of Freud [6, Satz 3] for
H"I(n holds only for ~ a zero of PI/t I(X), for which 2~ I~I ~clnI2. In
Theorem 3.6 we obtain a lower bound for H"p(x), 0 < P~ 2, which holds
for alllx[ <CIII

I
:'.

These results are stated as follows:

THEOREM 3.5. Let 0 < P ~ 2. Let W 2 be a regular weight. Then there
exists C I such that uniformly f{)r Ixl ~ C I Cf",

(i) HI/I'(x)~C{(/l!q,Y 1 W2 21'(X)

+ [(n!Cf")\x-x,,,IY W I'(x)}, pop 1.

(ii) H".I(x)~c(n/qt/)lx-x,,,I{logn+ W I(X)}+C2·

(3.14 )

(3.15 )

The following results show that the upper bounds in Theorem 3.5 are
substantially best possible.

THEOREM 3.6. Let 0 < P ~ 2. Let W 2 be a regular weight. Then there
exists C I such that uniformly for Ixl ~ C I ql/'

(i) H"p(x)~c{n!q"V 1 W2 21'(X)

+[(n!q")lx-x,,,IY(I+[xl) PWP(x)}, Pop 1.

(ii) H"I(x)~c(n!Cf")lx-xi,,I{logl7+(l+lxl) I W I(X)}+C2'

(3.16 )
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Both of these theorems rely on the following - relationship for the
orthonormal polynomial:

THEOREM 3.7. Let W 2 he a regular weight. Then there exists c such that
uniformly for Ixi < cq",

(3.17)

The proofs of Theorems 3.5, 3.6 and 3.7 appear in Section 4.
Theorems 3.2, 3.3 and 3.4 on Lagrange interpolation are proved in Sec
tion 5.

4. BOUNDS FOR H".,,(x)

We need a number of preliminary results.

LEMMA 4.1. If W 2(x) satisfies the explicit assumptions of Definition 3.1
then the following results hold:

(a) K,,(x, x):S; c(njq,,) W- 2(x),

(b) There exists C2 such that

K,,(x, x)? c(nlq,,) W 2(X),

(cJXI":S;cq,,.

XER (4.1 )

(4.2)

(4.3)

(d) There exists C2 such that for Xk -1,,1' Xk"E [-c2qn' c2qn],

Prool (a) This is Lemma 2.5 in [8, p. 25].
(b) This is Lemma 4.2 in [8, p. 33].
(c) This follows from Theorem I in [7, p. 49].
(d) This follows from Theorem 5.1 in [8, p. 36]. I

(4.4 )

LEMMA 4.2. Let W 2 satisfy the explicit assumptions of Definition 3.1.
Then there exists c such that for XE [-cqn' cq,J,

(a) W(x jn ) - W(x) - W(xj + l",).

(b) lj,,-An(X)-}'/+I.,,'

Prool See Lemma 4.2 in Knopfmacher [11]. I

(4.5)

(4.6)
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LEMMA 4.3 (Properties of Freud weights).

(i) Clx2~Q(x)~e2xl",

(ii) CIXlil1 "I";q,~e2xI2,

(iii) If H" > I then uniform/v for I ~ r < II";

Q'(vx) ----- Q'(x),

(iv) Q(x)----- xQ'(x) ~ x 2Q"(x),

X?Cl'

X? e,.

X?Cl'

(4.7)

(4.8 )

(4.9)

(4.10)

(4.11 )

Proof: (i) As Q" is nondecreasing and positive, it is easily seen that
Q(x)?e t x 2 for large x. The upper bound follows from Lemma 7(v) in
[ 15].

(ii) The upper bound is Lemma 4.2g in [II ]. For the lower bound
see Lemma 7(viii) in [15].

(iii) This is Lemma 7(ix) in [15].

(iv) The first part of (4.10) is Lemma 7(vi) III [15]. It suffices to
establish

Q'(x) ~ xQ"(x),

In view of (3.1 ), it suffices to shown

Q'(x) ~ exQ"(x),

But for X? I, by (3.2),

Q'(x)=Q'(I)+ r' Q"(u)du
·1

~Q'(I)+xQ"(x)(l+c I ).

Since lim,. f Q'(x)= x, (by (4.7) and the first part of (4.10)) we obtain

(1 + e) I ~ lim inf xQ"(x )/Q'(x).

Hence, this completes the proof of (4.10).

(v) This now follows from (4.7) and (4.10). I

LEMMA 4.4. (Local Markov-Bernstein inequality). Let W 2 satisfy the
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explicit assumptions in Definition 3.1. There exist cl> C2 and C3 such that for
0<<5 ~ c 1 and all polynomials P of degree at most n,

Proof Let ~n denote the positive root of the equation

(4.13 )

n large enough. It is shown in Lubinsky [17, Corollary 3.2], that for all
polynomials P of degree at most n, and all 0 < <5 < E ~ 1,

It is easy to see that (4.14) implies (4.12), provided we can show

n large enough. (4.15 )

Now by (3.2) and (4.13) above

q"Q'(qn) = n ~ ~~Q"(~n)(1 + c 1 )

~~nQ'(~n)(1 +cd,

by (4.10). Since Q' is nondecreasing, we obtain for some c> 1,

qn Q'(qn) ~ (c ~,J Q'(c ~n)

so that

n large enough.

Next, from (4.13), we see

qnQ'(qn) = n ~ ~~Q"(~n)

~ C2 ~nQ'(~n)

(by (4.10), for some C2 ~ 1)

as ('2 ~ 1. We deduce qn ~ ('2 ¢n' I
At this stage we can prove assertion (3.8).

LEMMA 4.5. Assume W 2 is a regular weight. Then there exists C1 such
that

(4.16 )

640:51 :3-4
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Proof In view of (3.4) it suffices to show

(4.17)

We shall use the identity

Kn(x,x)=}'n' (p;,(x)p" \(x)-p,,(x)p;, ,(x)), (4.18)

which follows easily from the Christoffel-Darboux formula. Using (4.2)
and (3.7) with x = Xk,p we obtain

Now by the local Markov-Bernstein inequality, we have

lip;, WII/.,i
(4.20)

by (3.4), if b is small enough. Then (4.19) and (4.20) yield

which yields (4.17). I
Proof of Theorem 3.7. Let Ixl < cqll' We use the technique of Nevai [22,

p. 171].

(by the Cauchy -Schwarz inequality)

~c,

by (4.6). Now either x lies between XI I." and xI" or X lies between XI" and
x/+ I .,,' Let for simplicity, XI,,~X~XI I.,,' Then by Lemma9.32 [22.
p.170],

Now by (4.6) and (3.8),

Also II I.n(x)~O, Iln(x)~O and sign p" \(xl _I.,,)=-signpn \(x/II)'

Hence using (2.3) and the fact that lx-x, I.nl ~ Ix-xlnl.



LAGRANGE INTERPOLATION

Therefore for Ixl ~ cq", in all possible cases,

Hence by (2.3)
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i,~,(~'" Ih',Ylp,,(x)/(x - xI ,,)1
2
p~ 1 (XI,,) ~ I. (4.21)

The result now follows by (3.8), (3.7), (4.1) and (4.2). I

LEMMA 4.6. Let 0 < p < 2. Let W 2 satisf."v the explicit assumptions in

Definition 3.1. Then

"I Ak" W -!'(Xk,,) ~ C,

k c_ 1

n = 1, 2, .... (4.22)

Proof: It is obviously sufficient to show that

W!'(x) W 2(x) dx. (4.23)

To see this we note that Theorem 4 in [15 J shows that there exists an
entire function G(x) with the following properties:

and

G(x) ~ W !'(x) x 2 as x ---> 'x;

n = 1, 2, ... , X E' IR

Since

f' G(x) W 2(x) dx < x.
oi :r

lim W!'(x)/G(x)=O,
n -x

we can apply Theorem III. 1.6 [5, p. 93J to prove (4.22). I
Without further mention let W2 denote a regular weight in what follows.

LEMMA 4.7. There exists C 1 such that

(i) for lxi, IXkn I~ C 1 q",

IK,,(x,xkn)1 ~(n/qn)lx~xlnl W-I(x) W I(Xk")/lx~Xknl, (4.24)
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(ii) for Ixi < (', qn, IXkn I> C2 qn' ('2> ('I, we have

IKn(x,Xkn)!~qn J/2(n!qn)!x-xjn l W l(x)!Pn l(Xkn)!' (4.25)

Proof (i) It follows from (2.2), (3.7), (3.8) and (3.17) that

IK( )
1

=!i'n.-IPn(X)Pnl(Xkn)1
nX'Xkn .

('n X-X kn

~ql1(ql1 12 W l(xkl1))((n!q,Jlx-x iI1 1 ql1 '/2 W '(x))!lx-x kI1 1

~(n/ql1)lx~Xil1l W '(x) W '(xkn)/lx-Xk"l.

(ii) This follows similarly from (2.2), (3.7), (3.17), (4.3) and since

LEMMA 4.8. Let 0 < P~ 2. Let

H~/})(x) = L ,{kn IK,,(x, xkn)ll',
Ix qnl ~ I

k *i

Then there exists C 1 such that for Ixi ~ c, q",

x E lit (4.26)

(a) H~/})(x)~c[(n!ql1)lx-XiIlIJI'{(n!qn)l''w2 2"(X)+ W"(x):,

I < P~ 2, (4.27)

(b) H;,'i(x)~c(n/ql1)lx~xlnl{logn+W-I(x)}, (4.28)

(c) H~,t},(x)~c[(n/ql1)lx-XiI1IF, O<p<1. (4.29)

Proof First note that for P = 2, by the Gauss-quadrature formula

II

HII,,(x)= L ,{kIlK~(x,Xkll)
k~1

= IX K~(x, t) W 2(t) dt
cr

= K,,(x, x) ~ c(n!qll) W 2(X), (4.30)

by (4.1). So we may assume p < 2. Next, we note that it suffices to consider
x ~ 0, as H~,I}, (x) is an even function. To see this we note that
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since each orthogonal polynomial is either even or odd and further the
zeros x nn' ... , XIn are symmetric about 0. So let X;:;:: 0, and let U E (I x - Xkn I,
jx-xknl +qn/n). If first x>xk,,, then

x-uE(x-lx-xknl-qn/n, x-Ix-xknl)

Since W(y)"-' W(y+qn/n) for lyl :(c,qn' we have

W(X - u) "-' W(x kn ).

Secondly, if x < Xk,,, then

X+uE(x+lx-xknl, x+I·'(-xknl+qn/n)

Hence

(4.31 )

(4.32)

Now as X;:;::°and u>O, Ix-ul :(X+u, so that W(x+u):( W(x-u). Then
by (4.31) and (4.32),

W(Xkn ):( cW(x - u), (4.33 )

for u E (Ix - Xkn I, Ix - Xkn 1+ qn/n) and uniformly for 0:( x < c I qn' Further
more for such u, if k #j, (4.4) shows that

(4.34)

Next by (4.2), (4.24) and (4.26),

jx-xknl ~ I

k #/

:(c[(n/qn)lx-xjnIY W i'(X)

x I 1'1' ""1+,,,,''1 W2 P(x-u)u I'du
Ix '>:klll ~ 1 .,' Ix \-);111

k #/

(by (4.33) and (4.34))
.. 1 + qn/'n

:(C[(n/q,,)lx-xjnIY W Pix) I W2-P(x~u)ul'du. (4.35)
" {jilin
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Here we have used the fact that each interval of the form J A = (Ix - '\AII!'
Ix-xAn! + Cf,,/II) can intersect at most two intervals of the form 11= (hillin,
(/ + I) Cfllln), 1=0, L 2, .... and is contained in the union of at most two
such intervals. Furthermore, it follows from (4.4) that the number of inter
vals J A intersecting any II is bounded above independent of x, at least for
Ix! <('I Cfll and some suitable ('I' Next by (4.35)

H;,1},(x)~c[(n/Cf,rllx-xIIIIYW2 21'(X) I WI' 2(X) W2 I'(X-U)u I'du.
"'1{!I,'1I

(4.36)

If firstly x~2, then WI' 2(X) W2 I'(X-U)~c for all UE [Cf,,/n, 2] and so

H;,I},(x)~('[(njqll)lx-xIIIIYW2 2/'(X) I u I'du.
"'qlJ- n

(4.37)

For x ~ 2 (4.27), (4.28) and (4.29) follow easily from (4.37) as
W2 21'(X) ~ 1, if °< p ~ I. Note too, that log(njCfIl) ~ log 11, by (4.8). Let us
suppose now x>2. Then for UE [qjn, 2J,

WI' 2(X) W2 1'(x-u)=exP ((2- P)r"Q'(t)dt)

~ exp c u Q'(x) (4.38 )

as Q' is positive and nondecreasing and x> x - U> x- 2 > O. Then by
(4.36) and (4.38) for 2~X~Cl qll'

.,
H;,I},(x)~c[(n/qll)lx-xIIIIY W2 21'(X) r exp(cuQ'(x))u Pdu

lIn ,,-II

r2,Q'!\1

= c[ (njCfIl )Ix - XIII IY w2 2p (X) I c" H' I' dw(cQ'(x))l' I

"cQ'(\lllll,1l

(by the substitution w=cQ'(x)u)

~c[n/qll Ix-xlIlIY we 21'(X)(Q'(xJjf' I

XI fl . . WI' dw+ f
2cQhl

c" dWl.
L"cQ'l.\)q/l," "'I J

(4.39)

In the case where cQ'(x) q,,/n > I or 2cQ'(x) < 1, we omit, respectively, the
first and second integrals in (4.39). Now let 1 < P < 2. Then from (4.39) for

2~x~cl qll'

H~,I~(X) ~ c[(njqll)lx - x)1I1 Y W2 2p (x)[(n/q,Y 1+ (Q'(xJjf' I e 2eQ1 \ll
(4.40 )
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From (4.27) and (4.40), we see that it suffices to prove that
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X EO' [0,:£ ) (4.41 )

in order to complete the proof of (4.27). But the left member of (4.41 )
equals

exp( - (2 - p) Q(x) + (p - I) log Q'(x) + 2cQ'(x))

~ exp(Q(x){p - 2 + clx))

(by (4.10) and (4.1 J))

since for large x, p-2+clx<0. Hence we have proved (4.41) and also
(4.27), for Ixl ~c, q". The cases p= I and O<p< J, follow similarly from
(4.39). If p < 1, we use the fact that W 2 21'(1\') < 1. I

LEMMA 4.9. Let 0 < p < 2. There exists c such that for Ixl < cq,J'

Prool We have by (4.1 ), (4.2) and (4.24) with k =j,

)"kl/IKI/(x, xjl/)II' ~ q,)n W 2(x jl/)[(nlql/) W '(x) W I(X/I/)Y

~ (nlql/)I' 'W2 21'(X),

hy (4.5). I

LEMMA 4.10. Let 0 < p < 2. We define fc)r a suitahle choice of c,

H:,2~(X) = L )'kl/IKI/(x, xkl/)II'·
Ix \·knl:?:: I

IXknl < ('(In

Then there exists c, such that uniformlyfor Ixl <c, ql/'

H:,2~(x)~c[(nlql/)lx-XjI/IJPW P(x).

Prool It follows from (4.24) and (4.22) that

1/

H:,2J(x)~c[(nlql/)lx-xjI/IYW-I'(x) L )'1,1/ W I'(xkl/)
k~'

~c[(nlql/)Ix-Xjl/IYW I'(x). I

(4.42)
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LEMMA 4.11. Let 0 <p < 2. Let c he as in Lemma 4.10 and let

H~,3~(X) = L i·k" IK,,(x, Xk"W,
IXAn I :> C{/11

Then there exists c\ <c such that uniformly for Ixi <c\q",

H:,3~(X)::;;cq"1'2[(n/q,,)lx-Xj,,IJPW P(x).

Proal By (4.25)

I-\"I'!II > ('(111

::;;cq,-;,,!2 [(n/q")lx-xj,,lJ" W "(X)( L. i.k"p;' ,(Xk,,)')"!2
IXkl11 > (qn

(by Holder's inequality)

Proof of Theorem 3.5. First let 0 <p < 2. The upper bound now follows
directly from Lemmas 4.8-4.11 for Ixi < c, q", n sufficiently large, and
noting that by (4.4),

[(n/q,,)lx - x/"I J"::;; c.

The case P = 2 follows from (4.30). I

(4.43 )

Proof of Theorem 3.6. It suffices to consider x ~ 0 as Hn." is even. We
suppose x> 2. The proof for 0::;; x < 2 is similar. Now by (4.1) and (4.24)

for x, Ix k " 1< c\ q",

x [(n/q,,)lx~xj,,1 W '(x) W-'(xk,,)/lx-xknlJ"

~cq,,/n W "(x) W2
"(xk,,)lx~xk,,1 "[n/qn Ix-x!"I]".

(4.44 )

Now let us consider the sum over all abscissas Xk" which fall in (0, 1). By
the separation property of the zeros the number of such X k" is order n/q/l"
Therefore if 2 < x < cq",

0< Xkn < 1

=CX- P W-P(x)[n/q"lx-x/"IY (4.45)
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Again by (4.44) and using the fact that by (4.4)

x,,, - x, . r" > cr(j,,/n,

I)"" IK,,(x, x,,,)iI'
\ I \'AII<"'\

" 1

I r (' /I (/'1
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II' (j,,/nl {,

r f' (4.46)
I r (' ~ /I 1/11

Now it is easily seen that

0</)<1.

p= L
1<p~2. (4.47 )

Now since x> 2, (0, 1) and (x - I, X) are disjoint intervals. The result for
p =1= L now follows from (4.45) and (4.42). For p = 1 the result follows from
(4.45), (4.42), (4.46), and (4.47). I

In order to prove Theorem 3.3 on Lagrange interpolation for the weights
IY",(.v), we must derive as well, an upper bound for HI/f'(x) for Ixl > C 1 1/".

Ta this end we prove:

LUvl\IA 4.12. For all x E R

(i) ()<p~1.

(ii) Let C 1 he an arhitrarl' constallt. Theil

1<p<2.

Proof: (i) Let 0 <p < 2. It follows from Holder's inequality, (4.30) and
(4.22) that
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"L )'k" IK,,(x, 'kll)11' WII' CI C('kll)
k~\

:( cKII(x, X)1'2

)

IC I>lc
2 L'2 )(2·'( 2 [J))

(4.48)

Next assume O<p:(1. Now Ixklll>Q \(1ogn/qll) implies that
Q(x k ,,) ~ log n/qw Hence

W('kll) = exp( - Q('k,,)):( q,,/n.

Therefore if S =: 'k,,: IXkn I ~ Q I (log n/qll) j

(4.49)

II

I )'k" IKII(x,xkull l
':( max (WIC I'IC(Xk")} I )'kll IK,,(x,xkulll' WII' CI C(X kll )

" Ski

:(c(q,,/n)IC I'lc KII(x, X)I'C

(by (4.48) and (4.49))

(by (4.1))

:( c(n/q,Y' \ W I'(X).

(ii) Let 1<p<2. Now Ixklll >c\q" implies

by (4.7). Therefore by (4.8)

W('kll) = exp( - Q(xkll )):( exp( - c,ncil
+el). (4.50)

Hence for n sufficiently large,

I\"/..:nl > ('j(!n

(WIC 1'1/2(Xk"):
IX/<lll > Cl'ln

II

X I )'k" IK,,(x, -'k,,)11' WII' CIC(-'kll)
k~1

:((n/q,Y'/2exp(-c((2-p)/2)n21!' <I) W I'(x)
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(by (4.48), (4.1) and (4.50))

~ cW "(x). I
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THEOREM 4.13. Let W(x)= W
I1I

(x), m=2,4,6, .... In the case
W(x) = W 2(x) let x E!R. Otherlvise let (; > 0 and let x E !R '\,' (2a n -;;n 1m

2a" + I:n 1/11I). Then for n = 1,2, 3, ...

(i) H".,,(x) ~ c{ (n l IIJl)p I W2 2,,(X)+ W "(x) }, I <p~2.

(ii) H".I(x)~c{logn+ W I(X) }. (4.51 )

(iii) H".,,(x)~c W "(x), O<p<1.

Prool The results for Ixl < CI q" follow from Theorem 3.5, (3.6) and
(4.43). Therefore let Ixl ~CI q". Now by (4.7) for n sufficiently large,

Q l(log(n/q,,)) < c(log(n/q,,))12 < c(log n)12 < C2q".

It follows from Lemma 4.12 for 0 < p < 2 that we need only consider the
sum over abscissas Xk" which satisfy ixk,,1 <c2q,I' C2<C I • Now by (2.2),
(3.7), (3.8) and (4.22)

II

I ;'k"IK"(x,xk,,)I"~cq,,,,/2Ip,,(x)II' I ;'k"W "(Xk,,)
I'"klll <. I''!(//j k 1

~ c q" ,,/2 Ip,,(xW'. (4.52)

At this point we require a bound for Ip,,(x)l, Ixl > C I ql/" For the weights
W I1I (x) Lubinsky [16] proved the following inequality:

W~,(x)p~(x)II-I.,f/(2a,YI~cn 1111, XER

We deduce from this that for xE!R\(2a,,-t,n 1111,2a,,+l:n 1111)

where the constant in (4.53) depends on I: > O. If m > 2 the result follows
from (3.6), (4.52) and (4.53) for n sufficiently large. In the case m = 2, (4.53)
holds for all xE!R, [26, p. 242, equation 8.91.10]. Hence the result by (3.6)
and (4.52). To extend the results to all n, we note that by Holder's
inequality and (4.1) for n < no, no fixed,

HII.,,(x) ~ CK,,(x, X),,2

~ C n;,/2 W "(x)

=c W·"(x). I



250 ARNOLD KNOPFMACHER

For W(x) = WIII(x), m > 2, the results of Bonan and Clark [4J may be
used to fill the gap (2a,,-w 111I, 2a" + I;n hll).

5. POINTWISE CONVERGENCE OF LAGRANGE INTERPOLATION

We now apply the bounds for the Lebesgue function H". dx), to prove
pointwise convergence of Lagrange interpolation for uniformly continuous
functions f(')'

Proof of Theorem 3.2. Throughout the proof we use C 1 to denote a con
stant for which Theorem 3.5 is valid. Furthermore we use C 2 to denote a
fixed constant which satisfies c2 >2 and X 1,,<C2 q/l" Now let I;,(x)=
f(c 2 Q,,'.;j. Then

(5.1 )

Now we can find a polynomial P(x) of degree :'( n - 1 so that for Ixl :'( 1,
IP" l(x)1 :'(2111;,11, and by Jackson's theorem (see Lorentz [13, p. 58,
equation 10J for a proof for trigonometric polynomials)

If,(x) - P" l(x)l:'( Cr wrU;" n I)

:'( C C r (oJ/: Q,)n),

1ft,) - P~ dx)l:'( C Cr wrU; qll/n),

Now by (5.2), (3.15) and the identity

(5.2)

"
P" I(X/C 2 Q,,) = L Ik,,(x) P" I(X/C 2q,,),

k~1

it follows that for Ixl <cIQ",

"
If(x) - L Idx)f(xk,,)1

k~1

"
:'(If(x)-P" l(x/c2Q,,)I+ L I/k"(x)llf(xk"J-p,, I(Xk,)C2 qn)1 (5.3)

k~l

:'(crwr(Iqn!nJ!(n/q"Jlx-x,,,I[logn+ W I(XJJ+C}. I

Proolof Theorem 3.3. Let C 2 be as in the proof of Theorem 3.2 above.
As inequality (5.3 J is valid for Ixl < C2 q" we can apply (4.51 J to obtain the
upper half of (3.10). By Theorem 4.13 we need not omit the interval of
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length 2m 1m around 2a" in the case m = 2. We prove the result for
Ixl > c2 q" as follows:

If(x) - L,ll; x)1 ~ If(x)1 + IL,,(f; x)1

~ W(c2Q,,)Ilfll W I(X) + ILner x)l. (5.4)

Wm(c2q,,) < Wm(q,,) = e lIm. (5.5 )

Also. by the infinite-finite range inequality [Lubinsky, 14, Theorem A],

Ix" L,,(f; x) W(xJI ~ max Ix" L,,(f; x) W(xJI
\E

~ max Ix" L,,(f; x) W(x)1
Ixl n/ ll

~ (cq,J" max IL,ztr x) W(xJI·
j,YI os; ('(In

Therefore.

IL,,(I x)1 ~ (cql1/x)" W-I(xJ max IL,,(f; xJ W(x)1
ixl~: ("(j,1

~ (cq,,/x)" W l(x)llfll max {f i.k" IK,,(x, xk,,)1 W(x)1
Ixl:e; ((In k = 1 S

:'( e l ( cqJx:)" W I (X) Ilfll max {K,,(x, x) W 2(x)} 12
Ixl :« Cl{n

(by the Cauchy Schwarz inequality)

:'( c3(n/q,Y/2(cq,.Ix)"llfll W I(X)

(by (4.1))

(5.6)

c 2 sufficiently large. The lower half of (3.10) now follows from (5.4), (5.5)
and (5.6). I

Prooj' 0/ Theorem 3.4. We define the function fJ t) as follows. Let
f,(xk,,) = sign lk"(X) and let/;, be continuous between the zeros Xk", Xk+ I."

and satisfy 11./;, II :'( 1. For example, let/" interpolate linearly between X k + I."

and x k " and letf,(t)=./;,(x I ,,), t>x l " andf"(t)=f,,(x,,,,), t<x"".
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Then

and

Also

ARNOLD KNOPI'MACHER

UJrU;,; ()) ~ 2'11//11 ~ 2'

L/lU;,;x)= I 1/,,,1\)1.,

IL"U;,; x) -f(x)l;: If,ll [H"llv) - 1].

(5.7 )

(5.S)

The result now follows if 11 is sufficiently largc, by applying (5.7) and (J 16)
to the abovc. I
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