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Under various assumptions on a weight W?, with support R, we obtain rates for
the pointwise convergence of Lagrange interpolation based at the zeros of the
orthonormal polynomials with respect to W2, in the case of a uniformly continuous
function f(x). The weights considered include W, (x)—=cxp(—4|x["), m an even
positive integer. The technique used generalizes that of Freud, who considered
pointwise convergence of Lagrange interpolation in the case of the Hermite weight.
However. even for the Hermite weight, our results refinc and extend the upper and
lower bounds of Freud. We establish as well, as preliminary resuits, upper and
lower bounds for generalized Lebesgue functions and for absolute values of the
orthogonal polynomials associated with B2 (x).  « 1987 Academic Press. Inc

1. INTRODUCTION

Convergence of Lagrange interpolation based at the zeros of orthogonal
polynomials is a subject which has been widely investigated in the case of
weights on a finite interval. For a comprehensive survey of what has been
achieved, see Nevai [25, 21]. However, owing to the present dearth of
results on orthonormal polynomials on the whole real line, Lagrange inter-
polation for weights with unbounded support has been investigated
primarily in the case of the Hermite weight.

Pointwise convergence of Lagrange interpolation for the Hermite weight
was proved first by Freud [6], while Nevai [23] proved results on mean
convergence of Lagrange interpolation. Bonan [27] obtained necessary and
sufficient conditions for the mean convergence of Lagrange interpolation
for the weights |x|* exp(~x?), x> — 1, in L,, 0<p< oo Sharp results for
the pointwise convergence of Lagrange interpolation for weights
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232 ARNOLD KNOPFMACHER

|x|*exp(—x"), 2> —1, were ecstablished by Kis [9]. The case of the
Laguerre weight has been investigated in detail by Nevai [ 18- 20]. Recently
Knopfmacher and Lubinsky [12] considered mean convergence of
Lagrange interpolation for a general class of Freud weights.

In this paper we prove pointwise convergence of Lagrange interpolation
for a subclass of the weights W? =exp(—2Q(x)), introduced by Freud [8],
and which include the weights W, (x)=exp(—4|x|"™), m an even, positive
integer. The technique used, involves a generalization of the ideas of Freud
[6]. In addition we make extensive use of properties of exponential weights
proved by Freud [8] and bounds for orthonormal polynomials proved by
Bonan [3] and Nevai [24].

However, cven for the Hermite weight, our results extend those of Freud
in one major aspect. The bounds Freud obtained in Satz2 [6], take no
account of the relative position of x and the zeros x,, of the orthonormal
polynomial p,(x) associated with W= We show, as one might expect, that
since the Lagrange interpolation polynomial interpolates to the function at
the zeros x,,,. one can obtain enhanced rates of convergence for values of x
suitably close to a zero x,,. This is shown in Theorem 3.2, for all the
weights considered.

Freud proved, in addition, that for a suitably defined function f(x), his
bounds were sharp, but only for certain discrete values of v, namely the
zeros of p, . ((x). In Theorem 3.4 we show that our bounds are in general
sharp for all values of x lying in an interval which can grow with .

In Section 2, we introduce the notation that will be used throughout the
paper. Furthermore, we state our main results in Section 3, and they are
proved in Sections 4 and 5.

2. NOTATION

Let W denote an even, nonnegative function on R with all moments

", = ‘ N WX d. n=0,1,2, .. finite.

’

Also It {p (W3 x))=!p,x)! be the sequence of orthonormal
polynomials with respect to W7, that is,

s

0, m+n

1, n = n.

Pl o) W) dy = {

Let 7, be the leading coefficient of p,, n=0,1,2, ... Let a,=7, /7.
n=1,23, ... We assume throughout that W(x)=exp(—Q(x)), where
Q(x) is even positive and twice differentiable in (0, oo) and Q' is positive
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and nondecreasing in (0, o¢ ). These weights were considered in some detail
by Freud ([ 7. 8] and references therein). Let ¢, denote the unique positive
solution of the cquation

q,0(q,)=n (2.1

Note that the sequence [g,! is increasing and as shown in [§, p. 221,

1< 4>y ””(/N <2

In keeping with the notation of Freud and others. K,(x, 1} denotes the nth
kernel of the orthogonal expansion.

no 1
K, (5. 1) =3 palx)pat )
A =0
_ Tnod /)/1('").1)/1 1(,1')*/);1(}‘)[’/: ](‘\.) (

X—

1o
[}

in

(the Christoffel-Darboux formula) and /(W7 x)=/ (x) denotes the
Christoffel function

A W2 ) = LK (X)),

Furthermore

b= AW X)L k=120

We denote the zeros of p,(x) by

A k=1.2,..,n where v, <x, < X,

nn L.n

Throughout given x, let x,, denote the closest zero of p,(x) to x. We define
X, to be the closest zcro of p,(x) on the left, in the event that v lies midway
between two zeros.

The fundamental polynomials of Lagrange interpolation are

Io(x) = gy, L 1 2 P i) (2.3)

T X— X‘kll

and the Lagrange interpolation polynomial of degree at most n—1 is

Ln(fs X) = Z lkn(x);f(xkn)' (24)

k=1
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For convenience we define

H, (x)=3 A IK,(x x,)I" forp>0,n=1,2, ...
k1
Let f(x) be a bounded measurable function on (—ac, o). We define the
rth modulus of continuity of f by

i (">(41)’A/'(x+vh)}, 0> 0.

yv=0 v

w,(fid)= sup

|h] <o
EAR SR

We use the usual norm notation. For example,
11, =sup | f(x)l.
ve R

Throughout ¢, ¢,. ¢, ... will denote positive constants independent of »n and
x. For notational convenience the constants will not be numbered except in
a case where confusion may arise. Thus ¢ does not necessarily denote the
same constant from line to line.

By f(x)~g(x) we denote the condition ¢, <f(x)/g(x)<¢, for all
relevant x.

The usual o, O notation will be used.

3. MAIN RESULTS

The class of weights considered is as follows:

DerINITION 3.1, W2=exp(—2Q) is a regular weight if it satisfies

(a) Explicit Assumptions. Q is an even, convex twice differentiable
function in { — o, oc) with Q(x)>0 and Q'(x)>0 for xe (0, ov) and

xQ"(x)/Q'(x)<¢, 0<x<x, (3.1)
0< Q" ()< (1 +¢}Q"(xz), 0<x, <x,, (3.2)
0'(2x)/Q'(x)>1+¢, x large enough. (3.3)

(b) Implicit Assumptions.
‘P,,(Wzﬂ x) W(xng(.]q;lrlﬁ ‘xlsé‘an’ n>1 (34)

The explicit assumptions can be weakened substantially for the required
properties of W? to hold. In fact (3.3) is implied by the other conditions on
Q. However, for ease of reference, we retain the restrictions in the above
form.
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The implicit assumption (3.4} is essential for our own proofs. We note in
particular, that the weights

W, (x)=exp(—1x"), m=2,4,6, .., (3.5)

satisfy (3.4) (Bonan [3], Nevai [24]). Of course for W, (x), we have by
(2.1)

q,=(2n/m)"". (3.6)

In addition it has been proved [1, Theorem 3.5; 10, Chap. 2] that if W?
satisfies the explicit assumptions of Definition 3.1

~y [ ny
a, =%, 1/ Yn ™~ Yn- (37)

We shall prove as a consequence of (3.1) to (3.4) that W? satisfies

|pr1 ](xkn) W(xkn)‘ ~ qn 1"’25 kanl < CC];,- (38)
The results on Lagrange interpolation can now be stated.

THEOREM 3.2. Let W? be a regular weight. For all uniformly continuous
Sunctions [(x) and all natural v, there exists ¢, such that uniformly for
‘X' < Ciqp-

()= L(frx) e, o fq,/m){(n/g,)]x—x,[[logn+ W (x)]+c].
(3.9)

THEOREM 3.3. Let W(x)=W, (x), m=2,4,6, ... Let £¢>0. Let r be a
positive integer. For all uniformly continuous functions f(x) there exist ¢, and
¢y > 1 with the following properties:

o [logn+ W ") fig/n.  |xl<crq,,
()= L(f: %)) < x¢(2a,~en " 2a,4en ")
W) ern, x> g, (3.10)

In the case of the Hermite weight we need not omit the interval
(2a,—en 2, 2a,+en"'"?). For m > 2, the results of Bonan and Clark [4]
can be used to fill the gap.

The following result shows that we can define a function f(x) for which
the rates of convergence of Theorem 3.2 are substantially best possible for
all |x| <cq,.
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THEOREM 3.4. Let W? be a regular weight. Then there exists ¢, and
functions f, depending on n and x, n= 1,2, .., such that for |x| <c,q,.

\/”(X) - Ln(/* “\‘H

>c2 "o lf, g {(nfg)lx —x,Togn+ (1+(x]) "W Yx)]—1].
(3.11)

In order to prove these results we need to obtain upper and lower
bounds for the Lebesgue function

Y (X)) (3.12)
ko=t

In fact we will obtain bounds for the generalized Lebesgue function

N

Hmp('\ﬂ)z z }'l\'n lez('rw ’\.l«'n)‘pﬂ (313)

k=1

for 0<p<2 H, (x) is the Lebesgue function (3.12). For the Hermite
weight, |x| < ¢n'” the upper bound (3.15) is better than that of [6, Satz 1]
for |x—x,,|=o0lqg,/n). Also, the lower bound of Freud [6, Satz3] for
H, (&), holds only for & a zero of p,, (x), for which 2< & <¢yn'” In
Theorem 3.6 we obtain a lower bound for H, (x), 0 <p <2, which holds
for all |x| < c¢,n'"

These results are stated as follows:

n.p

THEOREM 3.5. Let 0<p<2. Let W* be a regular weight. Then there
exists ¢ such that uniformly for | x| <¢,q,,

(i) H, (x)y<clln/g,)” "W (x)
+ Lnjg)x —x, [ 17 W "(x)),  p#L (3.14)
(i) H, (x)<cln/g)ix —x,{logn+ W H{x)}+c,. {3.15)

The following results show that the upper bounds in Theorem 3.5 are
substantially best possible.

THEOREM 3.6. Let O0<p<2. Let W* be a regular weight. Then there
exists ¢y such that uniformly for |x| <c¢,q,,
(i) H,(x)=clng,) "W (x)
+Ln/g)lx—x, | )7L+ [x[) "W "x)p,  p#L

(i) H,,(x)=cn/q,)lx—x;,{logn+ (1 +[x[) "W Yx)}+c,.
(3.16)
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Both of these theorems rely on the following ~ relationship for the
orthonormal polynomial:

THEOREM 3.7. Let W? be a regular weight. Then there exists ¢ such that
uniformly for |x| <cq,,

[pu(x) W(x)] ~|x—x,1(n/q,)q, " (3.17)

The proofs of Theorems 3.5, 3.6 and 3.7 appear in Section4.
Theorems 3.2, 3.3 and 3.4 on Lagrange interpolation are proved in Sec-
tion 5.

4. BOUNDS FOR H, (x)
We need a number of preliminary results.

Lemma 4.1, If W?(x) satisfies the explicit assumptions of Definition 3.1
then the following results hold:

(a) K, (x, x)< c(n/q,) W 3(x), xeR. (4.1

(b) There exists ¢, such that

Kn(xa .Y) 2 C{n/qn) W 2(,(), ’XI S CZ qn' (42)
(C)Xlnngn‘ (43)

(d) There exists ¢, such that for x, _\,, X, €[ —¢2q,. €24,
4, /}’1 <Xy 1 Xion < C3 qn//n' (44)
Proof. (a) This is Lemma 2.5 in [8, p. 25].
(b) This is Lemma4.2 in [8&, p. 33].

(¢} This follows from Theorem 1 in [7, p. 497.
(d) This follows from Theorem 5.1 in [&, p.36]. |

LemMa 4.2, Let W? satisfy the explicit assumptions of Definition 3.1.
Then there exists ¢ such that for xe [ —cq,, cq,],

(@) Wixy)~Wix)~Wx;, ) (4.5)
(b) }“j'nN;Lll(X)N;‘/+l,rz' (46)
Proof. See Lemma 4.2 in Knopfmacher [11]. J
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LemMmA 4.3 (Properties of Freud weights).
(1) ¢, x’<O(x)<eyx' X0y, (4.7)

(i) o, x"" <y <enx' X2 (5. (4.8)

(1i1)  If w> 1 then uniformly for 1 <t <w;

Q'(vx)~ Q'(x), X205, (4.9)
(iv) Q(x)~xQ'(X)~xX*Q"(x),  x=c,. (4.10)
(V) ¢ x<Q'(x)<0,x', X205, (4.11)

Proof. (1) As Q" is nondecreasing and positive, it is easily seen that
Q(x)= ¢, x* for large x. The upper bound follows from Lemma 7(v) in

[15].

(11) The upper bound is Lemma 4.2g in [11]. For the lower bound
see Lemma 7(viil) in [15].

(11) This is Lemma 7(ix) in [15].

(iv) The first part of (4.10) is Lemma 7(vi) in [15]. Tt suffices to
establish

O'(x)~xQ"(x), XZ s
In view of (3.1). it suffices to shown
Q'(x)<exQ"(x), X2,

But for x> 1, by (3.2},

<O+ xQ"(x)N1 +¢y).
Since im, , , Q'(x)= o, (by (4.7) and the first part of (4.10)) we obtain

(1+¢) '"<liminf xQ"(x)/Q'(x).

N

Hence, this completes the proof of (4.10).
(v) This now follows from (4.7) and (4.10). }

LEmMma 4.4. (Local Markov-Bernstein inequality). Let W? satisfy the
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explicit assumptions in Definition 3.1. There exist ¢, ¢, and c; such that for
0<d<c, and all polynomials P of degree at most n,

HPl WH L., (—38qn, Sqn) g C?(n/qn)”PW” Ly (—dc24n, Sc2gn)” (4]2)
Proof. Let £, denote the positive root of the equation
g2 max{|Q"(u)|: 1<u<E,}=n, (4.13)

n large enough. It is shown in Lubinsky [17, Corollary 3.2], that for all
polynomials P of degree at most », and all 0 < <e<1,

HP/W|f1_,,( —rﬁé,,.di,,)<C(n/£n)”PW“L1(71;5,,,85‘,1)’ (4.14)

It is easy to see that (4.14) implies (4.12), provided we can show

™~ Qs n large enough. (4.15)
Now by (3.2) and (4.13) above
4,Q'(q,)=n<E0"(E )1 +¢y)
~ & QUGN +¢y),
by (4.10). Since Q' is nondecreasing, we obtain for some ¢ > I,
4, Q'(q,)<(c &) Q'(c L)

so that
g, <cé,,  nlarge enough.
Next, from (4.13), we see
4.,0'(g,)=n=>&,0"(Z,)
zc,,0'(E,)
(by (4.10), for some ¢, < 1)
Z(c,8,) Q'(¢; 8,

as ¢, < 1. We deduce g, >c,¢&,. |

At this stage we can prove assertion (3.8).

LEMMA 4.5, Assume W?* is a regular weight. Then there exists ¢, such
that

!(pn -1 W)(xkn)! ~qr;71/25 |xkn| Scl qn' (416)

640:51/3-4
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Proof. In view of (3.4) it suffices to show
Hpn i W)(xkn” Z an l’:* 1’\’/\'/1\ < (,I qn- (417)
We shall use the identity

K (\ Y)_ln— lr'/:"n(pn( )pn 1(' ) pn( )pn ](,Y)), (418)

which follows easily from the Christoffel-Darboux formula. Using (4.2)
and (3.7) with x=x,,, we obtain

x(nfg,) Woxg) S gy Pt Py () (4.19)
Now by the local Markov-Bernstein incquality, we have
1P Wl sansam SCIGI D, WL b o
<cenfglt. (4.20)
y (3.4), if 4 is small enough. Then (4.19) and (4.20) yield
ey nig,<csnfqltip, L Wiy [Xenl g,
which yields (4.17). §

Proof of Theorem 3.7. Let |x| < ¢q,. We use the technique of Nevai [ 22,
p. 171].
GAx) =45 Ko (X, x,)

<2 i VK (X x)

i n
(by the Cauchy-Schwarz inequality)

<,

by (4.6). Now either x lies between x, ,, and x,, or x lies between x,, and

in

X; 1. Let for simplicity, v,,,<v<v .. Then by Lemma932 [22.
p. 1707,

[f l.n(x)+[,-”(x)> 1
Now by (4.6) and (3.8),

‘)'/ l,rlpn l(xj l.nHN'}V/npn 1(x/,,)\~

AISO [j 1, n( )>0 lfn(x)z() and Sign pn 1(\/— 1. n): “Signpn l(xm)'
Hence using (2.3) and the fact that [x—x, | ,|>|x—x,]

l/ l,ll('x-)g(‘/jrl(":)'
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Therefore for |x| < cg,, in all possible cases,

P (x)~1.

n

Hence by (2.3)

i;’i;(}"n l/f}’rz)zlpn(x)//(x*xm”zpi 1 (X/n) ~ l (421 )

The result now follows by (3.8), (3.7), (4.1) and (4.2). |}

LEMMA 46. Let 0<p<2. Let W? satisfv the explicit assumptions in
Definition 3.1. Then

Y A Wlx,) <, n=1,2, .. (4.22)

k=1

Proof. It is obviously sufficient to show that

im Y g, W)= W) W) dx. (4.23)

H o K v
k=1 .

To see this we note that Theorem 4 in [15] shows that there exists an
entire function G(x) with the following properties:

G(x)~ W 7(x)x* as X - o]
G¥(x) =0, n=1,2..xeR

and

[X G(x) Wi (x)dx < x.

v ¥

Since

lim W7 (x)/G(x)=0,

we can apply Theorem II1.1.6 [5, p. 93] to prove (4.22). |}
Without further mention let W? denote a regular weight in what follows.
LemMma 4.7.  There exists ¢, such that
(1) for Jxl’ |an| <C1 qn>

IKn(x9 xkn)’ ~ (n/qn)lx - Xjn | w- l(x) W l(xkn )/’x — Xin |’ (424)
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(il) for |x| <ciq,, |Xpn| > ¢2 ¢, €3> ¢, we have

Ko X))l ~ g, 2 (nfg,) x = x| W (0 p, o (x)l. (425)

Proof. (i) It follows from (2.2), (3.7), (3.8) and (3.17) that

1K, (x, x;,)]| = Yoot P X) P (X4y)
n\-vs Nkn/l T

7n X — Xyy
~ qn(q;; 12 W l(xkn))((n/QH)lx )n l qn 12 W /l X = ’Ckn
(n/qn ( /nl w 1 X) w I(Xk,,)/tX”,\‘/\.”‘.

(i1} This follows similarly from (2.2), (3.7), (3.17), (4.3} and since

lX'—an‘ >(C2_(‘l)qn:cqn~ l
LEMMA 4.8. Let 0<p<2. Let

H(“( ) Z /lkn|Kn(x’ an)‘pﬂ X€ R (426)

np
lx = xppl =1
kst

Then there exists ¢, such that for |x| <c¢, q,,

(a) H)(x)<clln/gn)ix—x,117(n/g,)" " W2 2(x)+ W 7(x) ),

n.p
l<p<2, (427)

(b) HINx)<cln/g,)lx —x,]{logn+ W™ (x)}, (4.28)
(¢) H ) (x)<clln/fg,)lx—x,11"  0<p<l. (4.29)

Proof. First note that for p =2, by the Gauss-quadrature formula
np(‘c)‘ z Akn \ xkn)
k=1

:r K2(x, 1) W(t) di

=K, (x, x)<clnfg,) W *(x), Ix|<c,q,, (4.30)

by (4.1). So we may assume p < 2. Next, we note that it suffices to consider

x>0, as H{!)(x) is an even function. To see this we note that

Kn( X, “xkn) = Kn(xv xkn)’
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since each orthogonal polynomial is either even or odd and further the
ZETOS X,,, ..., X1, are symmetric about 0. So let x>0, and let ue (|x — x,, |,
X —Xp,| +¢q,/n). If first x> x,,, then

x_ue(x-‘x_xkn]’qn/n’ x—lixkn‘)
= (xkn - qn//n’ an)'
Since W(y)~ W(y+gq,/n) for | v| <c¢,q,, we have

Wi(x —u)~ W(x,,). (4.31)

Secondly, if x < x,,, then
Xt+ue(x+|x—x.,], x+|x—x,,]+q,/n)
= (Xpys Xpy +G,/1).
Hence

Wix+u)~ W(x,,). (4.32)

Now as x>0 and u>0, |x —u| < x + u, so that W(x+ u) < W(x —u). Then
by (4.31) and (4.32),

W(an)gcw(x—u)v (433)

for ue (jx — x4, |x — x4, + g,/n) and uniformly for 0 < x < ¢, g,. Further-
more for such u, if &k #/, (4.4) shows that

”gqn/”‘F |x7xkn| <(,’x_x/\’n" (434)

Next by (4.2), (4.24) and (4.26),

H(x)<ce(q,/m(n/g,)lx —x, |17 W(x) 3 W2 7(,)/1X = x4, |7

¥ — xppl <1
k)
< c[(nfg)lx —x, 117 W I(x)
R
x Y . W2 P(x—u)u " du
IS A
k#j
(by (4.33) and (4.34))
Al guin
<cl(n/q,)lx—x,1]1" W r(x) | ' W2 r(x—u)u"du  (4.35)

Vgnin
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Herc we have used the fact that cach interval of the form J, = (|x — x,, 1.
|x —x,,| +¢,/n) can intersect at most two intervals of the form I,= (ly,/n
(I+1)g,/n), I=0,1,2, .., and is contained in the union of at most two
such intervals. Furthermore, it follows from (4.4) that the number of inter-
vals J, intersccting any /, is bounded above independent of x, at least for
|x! < ¢, ¢4, and some suitable ¢,. Next by (4.35)

HO () <cln/g,)lx—x, |17 W (x) | WP ) W2 (x—w)u 7 du.

", I7
Yify

(4.36)

If firstly x <2, then W7 *(x) W "(x —u)<c for all ue[qg,/n 2] and so

2

HO () <cl(nfg,)lx = 5,117 W (0| w "du (4.37)
Vgnn
For x<2 (4.27). (428) and (4.29) follow easily from (4.37) as
W2 r(xy< 1, if 0< p< 1. Note too, that log(n/g,) ~log n. by (4.8). Let us
suppose now x > 2. Then for ue[q,/n 2],

We G(x) W ”(,\'—u):exp((Z—P)iih Q’(’)d’>

1

LexpcuQ'(x) (4.38)

as Q' is positive and nondecreasing and x>x—u>x—2>0. Then by
(4.36) and (4.38) for 2< x<¢, ¢q,,

H,‘I‘,',( < c[(nfg,)|x—x, 117 W? 3”(.\')‘ explcu Q'(x)yu " du

Ypn
5 200N ‘ ) .
=c[(n/g,)lx —x, 117 W? (x) e w Tdw(cQ'(x))”
CeQUN ) gy n
(by the substitution w=¢Q’(.x) u)
< ('[n//qn |xﬁ-\‘/r11]p Wz :,,(-Y)(Q/(X))p l

~l f2eQ ()
x |:| w 7 dw+ ] " dwj|4 (4.39)
Q) gnin

In the case where cQ'(x) q,/n > 1 or 2¢Q’(x) < 1, we omit, respectively, the
first and second integrals in (4.39). Now let 1 <p < 2. Then from (4.39) for
2<.\‘<('] qn‘/

H(x) < e[(nfg)lx —x, 117 W2 () [n/g,)" T +(Q'(x)" Te* @]
(4.40)
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From (4.27) and (4.40), we sce that it suffices to prove that

W2 P(x)(Q'(x))” et <, xel0, ) (4.41)

in order to complete the proof of (4.27). But the left member of (4.41)
equals

exp(—(2—p) Q(x)+ (p—1)log Q'(x) + 2cQ'(x}))
<exp(Q(x){p—2+c/xj)
(by (4.10) and (4.11))
<,

since for large x, p—2+ ¢/x <0. Hence we have proved (4.41) and also
(4.27), for |x| <c¢, q,. The cases p=1 and 0 < p <1, follow similarly from
(4.39). If p< 1, we use the fact that W? *(w)<1. |

LEMMA 4.9. Let 0 <p<2. There exists ¢ such that for |x| <cq,,

A K3, )17 ~ (njq, )" " W22 (x), (4.42)

Proof. We have by (4.1), (4.2) and (4.24) with k =/,

/‘“A'IIJKH('Yﬁ xm)i/’»\,ql”/n Wz(x/n)[(n//qu) W l(v\’) W I(X/n)]p
~(n/q,)" "W (x),
by (4.5). B

LEMMA 4.10. Let 0<p < 2. We define for a suitable choice of ¢,

H)(I‘.}/)?('x‘) = Z }'Im IK,,(x, xku)' 7

v )zl

[Xkn| < cqn

Then there exists ¢ such that uniformly for |x| <c¢, g,.

H2 (x)<e[(n/g,))x — X172 W P(x).

n.p

Proof. Tt follows from (4.24) and (4.22) that

H:LZ,)p(x)SC[(”/‘]!I)I"“‘V‘/HI]” W*p(x) Z ;“kll W p(xkn)

ko1

<(’[(”/qn)|x_v’?m ]p w p(x)‘ I
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LemMma 4.11. Let O<p<?2. Let ¢ be as in Lemma 4.10 and let

H::; (X) = Z )~k:1 lKn(xe xkn)|p'

[%kn | = c4n

Then there exists ¢, < ¢ such that uniformly for |x| <c,q,,

HY(x)<cq, 72 [(n/g,)lx—x;, |17 W 7(x).

n.p\-

Proof. By (4.25)

HY ()< 3 dlpa (x)l” g, 72 Ln/g,)lx — x, [ 17 W "(x)|

[Xknl > cqn

02

N\ Pl
g('jq;p& [(n/qn)‘x_'xjn‘]p W ﬂ(x)< Z ;'krzpi l(xkn))

[%kn| > cqn

{by Hoélder’s inequality)
g“ qll /)”2[(n/qﬂ)l’x‘\'\‘]”‘:]p W p('x‘)' l

Proof of Theorem 3.5. First let 0 < p < 2. The upper bound now follows
directly from Lemmas 4.8-4.11 for |x|<c¢,q,, n sufficiently large, and
noting that by (4.4),

[(n/g,)x—x,]]"<ec (4.43)

The case p =2 follows from (4.30). |

Proof of Theorem 3.6. 1t suffices to consider x>0 as H, , is even. We
suppose x > 2. The proof for 0 < x <2 is similar. Now by (4.1) and (4.24)
for X, ‘xknl < (‘l qrn

)‘kn ‘K”(X, an)' r P C(‘]n/”) Wz(xkn)
X [(n/qn)|x7x/n| W ](x) W ](xkn)/|x—xknl]p
Zan/n w I’(x) WZ p(xkn}‘xvxkn‘ p[n/qn |X*xm ]Ii'

(4.44)

Now let us consider the sum over all abscissas x,, which fall in (0, 1). By
the separation property of the zeros the number of such x,, is order n/g,.
Therefore if 2 < x <c¢q,,

L LK X )T Z W) W) x Pnjg, 1x —x, 117

O < xpp< 1

=cx P Wlx)n/q, x—x,]]". (4.45)
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Again by (4.44) and using the fact that by (4.4)
Nn = Np o > OG0 R,

Z )'krz JK,H('\‘" ‘\‘l\n”/]

\ 1< vy < v

= ¢ ”/: 3{’(.\.) 4n ,"’n[n,”’(]” ‘-V —Nin ‘ ] r X \’,\' = N ‘ "

N I

>cW?® Mx)q,/nlnig, lx=x,117 Y lrg,n "
L

FT O Mgy

=clnig,)” "W () [nig, Ix—x, 117 Y For(4.46)
1

Epe o2y

Now it is easily seen that

7(/1,'1/”)1 . O<p<l.
Z r "= | clogn, p=1,
L s crm gy . l<p<2 (4.47)

Now since x> 2, (0, 1) and (x — 1, x} are disjoint intervals. The result for
p# 1, now follows from (4.45) and (4.42). For p=1 the result follows from
(4.45). (442), (4.46). and (4.47). 1

In order to prove Theorem 3.3 on Lagrange interpolation for the weights
W, (x). we must derive as well, an upper bound for #, (x) for [x]>¢, ¢,.

2

To this end we prove:

Lemva 412, For all xe R.

(1) Z Fon KX X N <elg, m)t 7 W Py), O0<p<l.

Vil Q) Ylogan ¢t
(1)  Let ¢, be an arbitrary constant. Then

S KA )W A(x), T<p<,

R L]

Proof. (i) Let 0 <p<2. It follows from Hélder’s inequality, (4.30) and
(4.22) that

64051 3-8



248 ARNOLD KNOPFMACHER

H

- el
S D KX, X)W ()

k=1

n P2 s on 2 py2
- 2w . ({p =~ 2020242 p))
<< Z Aku Kn('\* *\/\n)> ( z /*/w W >
Aol k=1

N2 py2

<K (x. )( IPITAEN)

k=1

<eK, (x, x)" (4.48)

Next assume O<p<l1l. Now |x.|>Q '(logn/g,) implies that
Q(xkn) > log ”/"‘1,; . Hence

W(xkn ) = exp( - Q(an)) < qn/"’n' (449)

Therefore if S={x,,:|x.,|=Q '(logn/g,)!

"

- hl el - 2 2 "
z /kn |Kn('\-‘ 'Ykrl)lll < m?'X : W“ " ~('\'/\'n) } Z Y ekn ‘K”(X, '\‘kn)lp WU’ ' (“\A'n)

Ry ko=

<elg, /m 77K (x, )"
(by (4.48) and (4.49))

<clg,m)® " (nfg,) W Hx))"?
(by (4.1))

<cln/g,)” "W "(x).

(i) Let I <p<2 Now |x;,| >c, ¢, implies
Q(x,,) = (e, 4,) = 2 45
by (4.7). Therefore by (4.8)
Wi(x,,) =expl—Q(x,,)) <exp(—cyn™ ) (4.50)

Hence for #n sufficiently large,

3 2 2 -
Z /‘An ‘KN('Y’ xkn)' ’ é max { W‘ Py ('xkn) :

X = O]y
| Xkn| = C14n I¥knl = €r4n

n
- )
X Z Akn \Kn(x-ﬁ -Ykn)lp W“’ h’h(xkn)

k=1

< (g} exp(—e((2=p)2) > ) W (x)
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(by (4.48), (4.1) and (4.50))
<cW (x). §

THEOREM 4.13. Let W(x)=W, (x), m=2,4,6,... In the case
Wi(x)= Wy(x) let xeR. Otherwise let ¢>0 and let xe R\ (2a,—en ',
2a,+en V™). Then for n=1,2,3, ...

(i) H,(x)<cl{n' "7 VW (x)+ WT(x) ], 1<p<g2.
(i) H, (x)<cilogn+ W '(x)}. (4.51)
(ny H, (x)<e W 7(x), O<p<l.

n.p\

Proof. The results for |x| <¢, ¢, follow from Theorem 3.5, (3.6) and
(4.43). Therefore let |x| = ¢, ¢,. Now by (4.7) for n sufficiently large,

0 '(log(n/q,)) < c(log(n/g,))' > <cllogn)' > <csq,.

It follows from Lemma 4.12 for 0 <p <2 that we need only consider the
sum over abscissas x,, which satisfy |x,, | <c¢.q,, ¢-<c¢;. Now by (2.2),
(3.7). (3.8) and (4.22)

”n
Z }'Arz IK”(.\', xku)|p<( q, e ‘p”(.\,)‘ﬂ Z /:'/\n w p("‘/\'”)
k=1

[Nin| < c24a

<cq, " pAx))”. (4.52)

At this point we require a bound for |p,(x)|, |x| >¢,q,. For the weights
W,.(x) Lubinsky [16] proved the following inequality:

W2 (x) p2 ()|l — x| Y/(2a,)| <en ', xeR

niT

We deduce from this that for xe R\(2a, —en '™ 2a,+en ')

palx) Wi (x)<en'™, (4.53)

i

where the constant in (4.53) depends on ¢>0. If m> 2 the result follows
from (3.6), (4.52) and (4.53) for n sufficiently large. In the case m =2, (4.53)
holds for all xe R, [26, p. 242, equation 8.91.10]. Hence the result by (3.6)
and (4.52). To extend the results to all »n, we note that by Holder’s
inequality and (4.1) for n <n,, n, fixed,

. :2
H, (x)<c K, (x, x)"
Lcenf?W r(x)

=cW(x). 1
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For W(x)= W,,(x), m> 2, the results of Bonan and Clark [4] may be
used to fill the gap (2a, —en '™, 2a,+en V™).

5. POINTWISE CONVERGENCE OF LAGRANGE INTERPOLATION

We now apply the bounds for the Lebesgue function H, ,{x), to prove
pointwise convergence of Lagrange interpolation for uniformly continuous
functions f(x).

Proof of Theorem 3.2. Throughout the proof we use ¢, to denote a con-
stant for which Theorem 3.5 is valid. Furthermore we use ¢, to denote a
fixed constant which satisfies ¢, >2 and x,, <c,g,. Now let f,(x)=
f(¢.q,x). Then

ol f )= (] c2q,0)<cwlf. q,0). (5.1)

Now we can find a polynomial P(x) of degree <n—1 so that for |x| <1,
[P, (x){<2|f,Il, and by Jackson’s theorem (see Lorentz [13, p. 58,
equation 107 for a proof for trigonometric polynomials)

) =P, () <c,olf,n )
g ce, ("')r(.f; qn//n )*
by (5.1). Thus if P¥ (x)=P, (x/caq,), xeR,
Lf(x) =Py () <ce,olfiq,/n) |x] <caq,. (5.2)
Now by (5.2), (3.15) and the identity
Pn l(x/'/(,lqn) = Z lkn(x) Pn 1(-‘(/"'24111)’

k-1

it follows that for |x| <c¢,q,.

| f{x)— Z lkn(x)_f(xl\'n”

K1
S0Py t5/eag )+ X Ul 1) = Py ((fesgp)l - (53)
<o fiq,/mUn/g,)lx —x, logn+ W Y(x)]+c). 1

Proof of Theorem 3.3. Let ¢, be as in the proof of Theorem 3.2 above.

As inequality (5.3) is valid for |x| < ¢,q, we can apply (4.51) to obtain the
upper half of (3.10). By Theorem 4.13 we need not omit the interval of
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tom

length 2en around 2a, in the case m=2. We prove the result for
|x| > ¢5q, as follows:

)= L)<+ [Lf X))
SW(eag MW 1x) + [L,(f X)) (5.4)
As 2> 1,
Wm(CQqu) < Wm(qn) =e¢ " (55)

Also. by the infinite—finite range inequality [Lubinsky, 14, Theorem A],

lx" L,(f x) Wix)l < max |x" L,(f: x) W(x)|

< max (X" L,(fix) W(x)|

Ixl < ¢qn

<(cg,)” max |L,(f:x) W(x)|.

Iyl < ey

Therefore,

ILfix) < (eq,/x)" W (x) max [L,(fix) W(x)

Ix] < cgn

<(cq,/x)" W '(x)|lf]l max { Y A LKL (X)) W(x)}

[x| = gy k=1

<ealeq, /)W OIS max (K, (x, x) W(x))

] < cyn
{by the Cauchy--Schwarz inequality)
< es(nfq,) e, /X)L FIT W (x)
(by (4.1))
<o "I IW ), x> g, (5.6)
¢, sufficiently large. The lower half of (3.10) now follows from (5.4), (5.5)

and (5.6). |

Proof” of Theorem 3.4. We define the function f,(z) as follows. Let
filx,,)=sign l,,(x) and let £, be continuous between the zeros x;,, X, .,
and satisfy | £, || < 1. For example, let f,, interpolate linearly between x, ., ,
and x,, and let £, (1)=f,(x,,), t > x,, and f,({) =1, (X,.), ¢ <X,,.
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Then
o[, 0) <201, <2 (5.7)
and
Lf,:x)= i |/, ()] {3.8)
Ko
Also

L, (LX) ==z | LILH, (x)y— 1]

The result now follows if # 1s sufficiently large. by applying (5.7) and (3.16)
to the above. |
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